← 返回
储能系统技术 储能系统 微电网 机器学习 ★ 5.0

基于自适应神经模糊推理系统和支持向量机的交流微电网故障识别与定位优化

Optimization of Fault Identification and Location Using Adaptive Neuro-Fuzzy Inference System and Support Vector Machine for an AC Microgrid

作者 A. Kurmaiah · C. Vaithilingam
期刊 IEEE Access
出版日期 2025年1月
技术分类 储能系统技术
技术标签 储能系统 微电网 机器学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 交流微电网 故障识别与定位 机器学习 自适应神经模糊推理系统 支持向量机
语言:

中文摘要

交流微电网中高阻抗故障、低故障电流水平和通信延迟使传统方法无法准确识别故障和定位。可再生能源与交流微电网集成时故障识别和定位至关重要。机器学习实现快速故障识别和定位。本文开发自适应神经模糊推理系统ANFIS和支持向量机SVM方法,解决低故障电流水平、检测高阻抗故障和通信延迟影响等问题。所提方法在IEEE 12节点系统的孤岛和并网模式下测试评估,孤岛模式执行时间0.00202s,并网模式0.0022s。ANFIS方法识别最优故障类型,SVM准确识别故障位置,实现最短执行时间和最小误差百分比,适合交流微电网系统实时应用。

English Abstract

Conventional methods for high-impedance faults, low fault current levels, and communication delays could not properly identify the fault identification and location of an AC Microgrid. Fault identification and locating are crucial when integrating renewable energy sources with AC Microgrids. In an AC Microgrid, high-impedance faults, low-fault current levels, and communication delays are incapable approaches for fault identification and fault location. Machine learning enables rapid fault identification and location. This paper develops an adaptive neuro-fuzzy inference system and a support vector machine approach. To address these issues, lower fault current levels, detect high-impedance faults and affect communication delays. The proposed method is tested and evaluated in IEEE12BUS system, both in islanded and grid-connected modes, with execution times of 0.00202s in islanded mode and 0.0022s in grid-connected mode. The proposed adaptive neuro-fuzzy inference system method recognizes the optimal fault type. At the same time, Support vector machine identifies fault location accurately, resulting in the shortest execution time and minimal error percentage. This approach is demonstrated by using the IEEE12BUS AC Microgrid system. Hence, this approach is well-suited for real-time applications in AC Microgrid systems.
S

SunView 深度解读

该微电网故障诊断技术对阳光电源微电网解决方案的保护功能提升有重要价值。阳光微电网系统需要快速准确的故障识别和定位能力。ANFIS结合SVM的混合方法可应用于阳光微电网控制器的故障诊断模块。毫秒级执行时间满足阳光实时保护要求。该方法对高阻抗故障的检测能力可增强阳光微电网系统的安全性。孤岛和并网双模式验证与阳光微电网运行场景一致,可直接指导阳光产品功能开发和算法优化。