← 返回
GMFLDA:基于图卷积网络的lncRNA-疾病关联预测改进方法
GMFLDA: Improved Prediction of lncRNA-Disease Association via Graph Convolutional Network
| 作者 | Kwangsu Kim · Jihwan Ha |
| 期刊 | IEEE Access |
| 出版日期 | 2025年1月 |
| 技术分类 | 电动汽车驱动 |
| 技术标签 | SiC器件 机器学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 长链非编码RNA-疾病关联 图卷积网络 深度矩阵分解 GMFLDA模型 预测性能 |
语言:
中文摘要
随着多种异构网络的快速发展,整合多源结构以捕捉实体间与实体内关系的需求日益增长。基于网络的方法在节点标签预测与潜在关联挖掘中表现出色,广泛应用于推荐系统、基因互作及lncRNA-疾病关联预测等领域。本文提出GMFLDA,一种融合图卷积网络与深度矩阵分解的机器学习框架。该模型利用GCN提取lncRNA与疾病的高保真特征表示,并通过多层感知机实现深度矩阵分解以推断潜在关联。实验结果显示,该模型在留一法和五折交叉验证中AUC分别达0.9183与0.9057,性能优于五种前沿方法,展现出卓越的预测能力,有望成为生物标志物发现的高效工具。
English Abstract
The rapid expansion of diverse networks has created a growing need to integrate multiple heterogeneous structures to effectively capture both inter- and intra-entity relationships. This integration helps preserve the intrinsic meaning of complex biological interactions. Network-based approaches have been highly effective in predicting node labels and uncovering hidden associations between entities. These methods have been widely applied in areas such as user-item recommendations, gene-gene interactions, and lncRNA-disease association prediction. In this study, we present GMFLDA, an advanced machine learning framework for inferring lncRNA-disease associations (LDA) by synergizing graph convolutional networks (GCNs) with deep matrix factorization. Specifically, GCNs are leveraged to extract and encode high-fidelity feature representations of lncRNAs and diseases, while deep matrix factorization, implemented via a multi-layer perceptron, facilitates the discovery of potential disease-associated lncRNAs. Our model exhibits outstanding predictive performance, achieving AUCs of 0.9183 and 0.9057 in leave-one-out and five-fold cross-validation experiments, respectively. Extensive comparative evaluations demonstrate that GMFLDA surpasses five state-of-the-art methods, underscoring its superior predictive capability. We anticipate that GMFLDA will serve as a powerful computational tool for biomarker discovery, significantly accelerating the identification of disease-associated lncRNAs while mitigating the time and cost constraints of traditional wet-lab experiments.
S
SunView 深度解读
该图卷积网络与深度矩阵分解融合方法对阳光电源智能运维体系具有重要借鉴价值。其多源异构网络整合思路可应用于iSolarCloud平台的故障预测:通过构建设备-故障-环境参数的多层关联网络,利用GCN提取SG光伏逆变器、ST储能变流器的运行特征,结合矩阵分解推断潜在故障模式。该方法的高保真特征提取能力可优化SiC器件的热失效预测,其节点关联挖掘机制适用于充电桩网络的负载预测与能量调度。特别是在电动汽车驱动系统中,可建立电机-控制器-电池的关联图谱,实现预测性维护,提升系统可靠性与运维效率。