← 返回
完全数据驱动且模块化的建筑热控制与物理一致性建模
Fully data-driven and modular building thermal control with physically consistent modeling
| 作者 | Mina Montazeria1 · Carl Remlingerb1 · Benjamin Bejar Haro · Philipp Heer |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 390 卷 |
| 技术分类 | 电动汽车驱动 |
| 技术标签 | SiC器件 机器学习 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | A fully data-driven thermal controller is proposed from room modeling to control. |
语言:
中文摘要
摘要 机器学习在智能建筑领域经历了显著的发展,无论是在建筑建模还是能源管理方面均是如此。数据驱动方法利用可获得的测量数据,绕过基于物理模型的缓慢且昂贵的校准过程,从而提供更高的适应性、更低的维护成本以及更大的灵活性。然而,这些模型的质量依赖于历史数据,而新建建筑可能缺乏足够的历史数据。本文提出了一种从温度建模到供暖控制完全数据驱动的模块化方法,在将控制器从源建筑迁移到目标建筑时仅需少量数据。该控制器由两个模块组成:一个深度强化学习代理,用于管理期望的室内温度;以及一个针对每个房间特定的执行动作映射器(action-mapper),用于调节供暖控制。当将控制器适配到新房间时,只需替换相应的动作映射器。该方法仅需几周的数据即可完成适配,并能以最小代价复用已有的高效策略。控制器的训练依托于基于神经网络的环境仿真器,并引入物理一致性约束,以确保状态和奖励的准确性。仿真和实际测试结果表明,与传统的迁移学习方法相比,该模块化控制器平均节能13%(最高达17%);与基于规则的控制器相比,平均节能26%(最高达32%),同时未牺牲任何热舒适性。
English Abstract
Abstract Machine learning has experienced significant growth in the smart building sector, whether for building modeling or energy management. Data-driven approaches leverage available measurements to bypass the slow and costly calibration of physics-based models, offering adaptability, low maintenance and greater flexibility. However, the quality of these models depends on historical data, which may be lacking for newly constructed buildings. This paper introduces a fully data-driven modular approach, from temperature modeling to heating control, that requires few data when transferred from a source to a target building. The controller consists of two modules: a deep reinforcement learning agent that manages the desired room temperature and an action-mapper specific to each room that adjusts heating controls. To adapt the controller to a new room, only the action-mapper is substituted. This approach requires just a few weeks of data and reuses an effective policy with minimal effort. The controller is trained using a neural network-based environment simulator, incorporating physical consistency to ensure accurate states and rewards. Simulations and real-world tests show the modular controller achieves 13 % average energy savings (up to 17 %) compared to traditional transfer learning methods, and 26 % (up to 32 %) compared to rule-based controllers, without compromising comfort.
S
SunView 深度解读
该模块化数据驱动控制技术对阳光电源储能系统(ST系列PCS、PowerTitan)及充电站热管理具有重要价值。其深度强化学习架构可迁移至储能温控优化,仅需少量现场数据即可适配不同容量电池簇的热管理策略。物理一致性建模思路可融入iSolarCloud平台,实现储能系统26%以上能耗优化。模块化action-mapper设计启发SiC功率器件散热控制算法开发,通过快速迁移学习降低新站点调试成本,提升智能运维效率。