找到 13 条结果 · Applied Energy

排序:
储能系统技术 电池管理系统BMS ★ 5.0

一种基于实时频繁项集图像编码的锂离子电池健康状态数据高效估计方法

A data-efficient method for lithium-ion battery state-of-health estimation based on real-time frequent itemset image encoding

Zhen Wangac · Li Zhaob · Yiding Liacd · Wenwei Wangac · Applied Energy · 2025年1月 · Vol.398

摘要 下一代智能电池管理系统(BMS)需要对电池健康状态(SOH)进行精确的实时估计。然而,现有研究常常低估了由大量质量不一的在线数据所带来的挑战,以及由此引发的数据存储、传输和计算压力。本文提出了一种基于有损计数的门控双注意力Transformer(LC-GDAT)框架,在保持SOH估计高精度的同时,显著降低了历史数据的存储需求。为克服因数据压缩导致的信息丢失所引起的误差,本文引入了两个关键模块。第一个是并行时空有损计数特征提取模块(PTS-LC),该模块利用频繁项提取技术识别电池运行过程中重...

解读: 该锂电池SOH实时估算技术对阳光电源储能系统具有重要应用价值。LC-GDAT框架通过有损计数算法大幅降低历史数据存储需求(实验室误差0.46%,实况误差2.23%),可直接应用于PowerTitan储能系统和ST系列PCS的BMS优化。双注意力Transformer机制能精准捕捉电池衰减特征,与iS...

储能系统技术 SiC器件 可靠性分析 深度学习 ★ 5.0

基于物理信息神经网络的锂离子电池健康状态、剩余使用寿命与短期退化路径联合估计

Physics-informed neural network for co-estimation of state of health, remaining useful life, and short-term degradation path in Lithium-ion batteries

Li Yanga · Mingjian Heab · Yatao Ren · Baohai Gao 等5人 · Applied Energy · 2025年1月 · Vol.398

摘要 锂离子电池由于各种内部和外部因素会随时间逐渐退化,这种退化带来了显著的安全性和可靠性风险,凸显了电池健康管理作为关键研究领域的重要性。然而,当前仍面临一个重大挑战,即开发一种通用的健康管理方法,以适应不同的电池材料、工作环境以及多样化的任务需求。为应对这一问题,本文提出了一种新颖的多任务健康管理方法,该方法将多任务处理框架与物理信息神经网络相结合。通过共享参数与任务特定参数的协同设计,并结合基于物理规律的特征提取机制,该方法高效地整合了健康状态估计、剩余使用寿命预测以及短期退化路径预测三项...

解读: 该物理信息神经网络多任务学习框架对阳光电源储能系统具有重要应用价值。可直接集成至ST系列PCS和PowerTitan储能系统的BMS中,实现SOH估算(误差0.75%)、RUL预测(误差104循环)和短期退化路径预测的协同管理。其基于恒压充电阶段电压电流数据的特征提取方法,与阳光电源iSolarCl...

储能系统技术 电池管理系统BMS ★ 5.0

基于增量容量曲线与S变换的电动汽车电池组健康状态估计

State-of-health estimation for EV battery packs via incremental capacity curves and S-transform

Siyi Tao · Jiangong Zhu · Yuan Lic · Siyang Chen 等10人 · Applied Energy · 2025年1月 · Vol.397

准确估计电动汽车(EV)中电池的健康状态(SOH)对于缓解用户的续航焦虑具有重要作用。然而,云端电池管理系统(BMS)数据质量欠佳,加之电池正极材料的多样性,为开发适用于实际EV应用的通用SOH估计方法带来了显著挑战。本研究提出了一种基于充电过程的可推广特征提取框架。该方法从增量容量(IC)曲线中提取时域特征,并利用S变换提取频域特征,同时引入了电池间不一致性指标。为评估所提取特征的鲁棒性,本文采用实验室数据进行了验证。此外,通过针对不同容量和正极材料电池的实验,分析了温度对电池容量及所提取特征...

解读: 该研究提出的电池SOH估计方法对阳光电源储能系统(PowerTitan/ST系列PCS)及充电桩产品具有重要价值。通过增量容量曲线和S变换的多域特征提取,结合GRU-LightGBM融合模型,可显著提升BMS电池健康状态评估精度(MAPE<1.99%)。该技术框架可集成至iSolarCloud平台,...

储能系统技术 储能系统 可靠性分析 ★ 5.0

基于精细化多状态建模的电池储能系统可靠性指标与评估

Refined multi-state modeling based battery energy storage system reliability indicators and evaluation

Xiaohe Yan · Jialiang Li · Nian Liu · Applied Energy · 2025年1月 · Vol.393

准确评估电池储能系统(BESS)的可靠性对于提高其运行效率、延长使用寿命以及降低维护成本具有重要意义。可靠性指标是实现BESS可靠性评估的关键环节。然而,当前的可靠性指标大多从BESS的整体角度出发进行设定,忽略了内部电池性能的退化过程,难以适用于大容量、多单元、拓扑结构复杂的BESS。因此,本文提出了一种基于BESS精细化多状态模型的可靠性指标体系及综合评价方法。首先,考虑电池单体的性能衰减,建立了基于电池单体健康状态(SOH)的多状态模型,并通过算子分裂的递归通用生成函数(UGF)方法将其扩...

解读: 该电池储能系统多状态可靠性建模技术对阳光电源ST系列PCS及PowerTitan储能解决方案具有重要应用价值。论文提出的基于电芯SOH的精细化多状态模型和'良好-衰减-风险-缺陷-故障'五级分类体系,可直接应用于阳光电源大容量储能系统的健康管理。结合iSolarCloud平台的预测性维护功能,该可靠...

储能系统技术 SiC器件 机器学习 ★ 5.0

超级电容器研究中的能量存储:从分子模拟到机器学习的跨学科应用

Energy storage in supercapacitor researches: Interdisciplinary applications from molecular simulations to machine learning

Yawen Dong1 · Yutong Liu1 · Feifei Mao · Hua Wu · Applied Energy · 2025年1月 · Vol.393

摘要 科学界持续关注超级电容器(SCs),因其在环境保护和能量存储方面具有重要意义。超级电容器的性能取决于比容量、循环稳定性、功率密度和能量密度等关键特性,其中电极材料的性能、电极与电解质之间的相互作用以及电极表面或层间的电荷转移过程,对超级电容器整体性能具有显著影响。在超级电容器的研究领域中,计算模拟的应用至关重要,因其具备强大的模拟计算与预测能力。本文综述了近年来利用密度泛函理论(DFT)和机器学习(ML)技术设计与优化超级电容器的最新进展。我们总结了DFT在理解电极材料的电子结构、电荷存储...

解读: 该超级电容器研究整合DFT、分子动力学与机器学习的方法论,对阳光电源储能系统具有重要价值。在ST系列PCS和PowerTitan产品中,可借鉴ML技术优化电极材料设计,提升功率密度和循环寿命;将SOH预测算法应用于iSolarCloud平台,实现储能设备健康状态智能监测;结合SiC器件特性,通过计算...

储能系统技术 储能系统 DAB ★ 5.0

基于数据驱动与机理模型的锂离子电池健康状态估计与拐点识别

State-of-health estimation and knee point identification of lithium-ion battery based on data-driven and mechanism model

Yulong Ni · Kai Song · Lei Pei · Xiaoyu Li 等8人 · Applied Energy · 2025年1月 · Vol.385

准确的健康状态(SOH)估计与拐点识别对于优化电池性能及生命周期管理至关重要。本文提出了一种结合改进的基于牛顿-拉夫逊优化算法优化支持向量回归与自适应提升算法(INRBO-SVR-AdaBoost)的SOH估计方法,以及一种基于最大垂直距离法并考虑失效阈值的拐点识别方法。首先,引入三项改进以增强标准NRBO算法的全局搜索能力与收敛速度,从而使SVR方法能够获得最优参数;随后,采用AdaBoost算法对INRBO-SVR方法进行集成,进一步提高SOH估计精度。实验结果表明,INRBO-SVR-Ad...

解读: 该锂电池SOH估计与拐点识别技术对阳光电源ST系列储能变流器及PowerTitan系统具有重要价值。INRBO-SVR-AdaBoost算法可集成至iSolarCloud平台,实现储能系统电池健康状态精准预测(误差<0.89%),优化BMS管理策略。拐点识别方法可指导ESS全生命周期管理,精确判定电...

储能系统技术 储能系统 ★ 5.0

一种考虑单体电池运行状态的锂离子电池健康状态贝叶斯迁移学习评估框架

A Bayesian transfer learning framework for assessing health status of Lithium-ion batteries considering individual battery operating states

Jiarui Zhang · Lei Mao · Zhongyong Liu · Kun Yu 等5人 · Applied Energy · 2025年1月 · Vol.382

摘要 锂离子电池(LIBs)健康状态(SOH)的快速准确评估对于实现高效的电池监测与管理具有重要意义。LIBs的退化是一个复杂的过程,每一块电池的退化路径均具有独特性,受到内部和外部多种因素共同影响。然而,现有方法通常将每块电池视为独立个体处理,未能充分挖掘和利用各单体电池的独特特征。为克服这一局限性,本研究提出了一种贝叶斯迁移学习框架,用于建模锂离子电池特有的退化过程,从而完成对SOH的评估。具体而言,构建了一个混合效应模型(MEM)以描述电池健康状态的退化过程,该模型能够捕捉不同电池之间的异...

解读: 该贝叶斯迁移学习框架对阳光电源ST系列储能变流器及PowerTitan储能系统的电池管理具有重要价值。混合效应模型可捕捉单体电池差异性,实现精准SOH评估,优化BMS策略。三种参数更新策略适配不同应用场景,可提升iSolarCloud平台预测性维护能力。该方法兼容循环老化与日历老化,适用于大规模储能...

储能系统技术 电池管理系统BMS SiC器件 ★ 5.0

AM-MFF:一种基于注意力机制的多特征融合框架用于鲁棒且可解释的锂离子电池健康状态估计

AM-MFF: A multi-feature fusion framework based on attention mechanism for robust and interpretable lithium-ion battery state of health estimation

Si-Zhe Chen · Jing Liu · Haoliang Yuan · Yibin Tao 等6人 · Applied Energy · 2025年1月 · Vol.381

健康状态(SOH)是电池管理系统(BMS)中的一个关键参数。利用多种数据源可有效提升端到端SOH估计的性能。然而,现有的基于多维特征的方法未能充分挖掘不同数据源之间的内在关联。同时,大多数方法缺乏可解释性,并忽视了噪声带来的不利影响。本研究提出了一种基于注意力机制的多特征融合框架(AM-MFF),以实现鲁棒且可解释的SOH估计。AM-MFF结合了卷积神经网络(CNN)和注意力机制(AM)的优势,能够高效提取并融合健康特征,从而全面感知电池老化信息。该框架将两个运行阶段的数据作为输入,并通过两个独...

解读: 该AM-MFF锂电池SOH估算框架对阳光电源储能系统具有重要应用价值。其多特征融合与注意力机制可直接集成至ST系列PCS和PowerTitan储能系统的BMS中,提升电池健康状态预测精度和抗噪性能。多输入容错设计确保单传感器故障时系统仍可靠运行,符合大规模储能安全需求。注意力分数的可解释性有助于iS...

储能系统技术 电池管理系统BMS ★ 5.0

一种基于多时间分辨率注意力机制的交互网络用于多种电池状态联合估计

A multi-time-resolution attention-based interaction network for co-estimation of multiple battery states

Ruixue Liu · Benben Jiang · Applied Energy · 2025年1月 · Vol.381

摘要 高效且可靠的电池管理系统依赖于对多个电池状态的精确联合估计,包括荷电状态(SOC)、健康状态(SOH)和剩余使用寿命(RUL)。然而,由于这些状态在不同时间尺度上具有不同的时间分辨率以及复杂的相互作用,特别是在缺乏历史电池数据的情况下,该任务面临显著挑战。为应对这些挑战,本文提出了一种新颖的端到端多时间分辨率注意力机制交互网络(MuRAIN),用于多种电池状态的联合估计,该方法直接利用当前的充放电循环数据,无需历史数据。MuRAIN方法引入了一个多分辨率分块模块,能够从循环数据中智能提取具...

解读: 该多时间分辨率注意力交互网络技术对阳光电源ST系列储能变流器及PowerTitan储能系统的BMS优化具有重要价值。MuRAIN可实现SOC、SOH、RUL的高精度联合估计,无需历史数据即可基于当前循环数据运行,特别适合浅循环工况下的商业储能应用。该技术可集成至iSolarCloud平台,提升预测性...

储能系统技术 储能系统 深度学习 ★ 5.0

基于图特征与深度学习的锂离子电池退化轨迹早期感知

Early perception of Lithium-ion battery degradation trajectory with graphical features and deep learning

Haichuan Zhao · Jinhao Meng · Qiao Peng · Applied Energy · 2025年1月 · Vol.381

摘要 在电池储能系统(BESS)的全生命周期管理中,早期捕捉锂离子电池(LIB)的退化路径至关重要,然而现有研究主要集中在短期电池健康状态(如健康状态,SOH)诊断。本研究提出一种创新性概念,旨在仅利用少量初始循环数据即可感知锂离子电池的退化轨迹,从而为BESS复杂化的运行与维护策略预留充足的调整空间。本文提出一种新颖的深度学习框架,通过构建基于电池早期使用数据的图特征来获取容量退化轨迹。为了捕获更丰富的容量衰减特征,该框架通过生成增量容量(IC)曲线和容量差分曲线对电压-容量数据进行增强,并将...

解读: 该早期电池退化轨迹预测技术对阳光电源ST系列储能系统及PowerTitan产品具有重要价值。通过少量初始循环数据的图形化特征和深度学习,可在电池全生命周期早期预判容量衰减路径,为储能系统预测性维护提供60个循环内的精准预警。该技术可集成至iSolarCloud平台,结合增量容量曲线分析,优化BMS健...

储能系统技术 电池管理系统BMS ★ 5.0

一种联合估计锂离子电池SOC与SOH的框架:消除对初始状态的依赖

A framework for joint SOC and SOH estimation of lithium-ion battery: Eliminating the dependency on initial states

Xiaoyong Zeng · Yaoke Sun · Xiangyang Xia · Laien Chen · Applied Energy · 2025年1月 · Vol.377

基于模型的方法被广泛用于电池状态估计,构成了电池管理系统的基础。然而,这些方法的有效性依赖于准确的初始状态设定,初始状态不准确可能导致严重的不稳定甚至发散,从而对电池安全构成重大威胁。由于状态荷电(SOC)与健康状态(SOH)之间存在相互依赖关系,这一问题在SOC与SOH的联合估计中尤为突出。本研究致力于消除对初始状态的依赖。首先,构建了两个具有外部输入的径向基函数自回归模型(RBF-ARXM),以捕捉电池的非线性动态特性,并建立SOC、SOH与观测值之间的关联关系。基于这些模型,推导出有效的目...

解读: 该SOC/SOH联合估算框架对阳光电源ST系列储能变流器及PowerTitan系统的BMS优化具有重要价值。通过消除初始状态依赖性,可显著提升储能系统全生命周期的状态估计精度和安全性。基于RBF-ARXM的非线性建模方法可集成至iSolarCloud平台,实现预测性维护和电池健康管理。该技术同样适用...

储能系统技术 电池管理系统BMS ★ 5.0

一种基于分数阶微分电压-容量曲线的锂离子电池健康状态估计新方法

A novel method for state of health estimation of lithium-ion batteries based on fractional-order differential voltage-capacity curve

Xugang Zhang · Xiyuan Gao · Linchao Duan · Qingshan Gong 等6人 · Applied Energy · 2025年1月 · Vol.377

准确估计锂离子电池的健康状态(SOH)对于确保电池管理系统稳定运行至关重要。特征参数(CPs)的提取是实现SOH精确预测的关键。传统的特征参数提取方法存在诸如参数数量少、特征提取困难等局限性。为解决上述问题,本研究将Caputo分数阶导数理论与电压-容量曲线相结合,引入分数阶微分电压-容量曲线用于特征参数的提取。此外,本文引入了v-支持向量机、弹性网络,并提出了闭环高斯过程回归方法,利用融合模型算法将这三个模型集成到一个融合模型中,从而提高SOH估计的精度。最后,我们设计了多组对比实验:将本文提...

解读: 该分数阶微分电压-容量曲线SOH估算技术对阳光电源ST系列储能变流器及PowerTitan系统的BMS优化具有重要价值。通过提取更丰富的特征参数并采用融合模型算法,可显著提升电池健康状态预测精度,增强储能系统全生命周期管理能力。该方法可集成至iSolarCloud平台实现预测性维护,降低储能电站运维...

储能系统技术 ★ 4.0

锂离子电池高倍率放电老化机理与解析建模:侧重于正极集流体溶解与颗粒断裂

Mechanism and analytical modeling of high-rate discharge aging in lithium-ion batteries: Emphasizing cathode current collector dissolution and particle fracture

Jingbo Han · Guoliang Li · Chong Zhu · Yansong Wang 等7人 · Applied Energy · 2025年1月 · Vol.393

摘要 以LiMnxNiyCozO2(NMC)为正极材料的能量型电池因其优异的能量密度特性,被广泛应用于电动汽车(EV)中。随着高功率应用场景的不断增加,研究能量型电池在高倍率放电条件下的老化机理,并对老化现象进行定量分析,已成为一项至关重要的任务。本研究首先在1C、2C和3C三种放电倍率下开展了加速老化实验,并结合多种宏观与微观测试技术,对电池老化的物理过程进行了系统深入的分析。结果表明,正极集流体溶解、铝元素在负极的沉积以及正极颗粒的破裂是导致容量衰减的主要原因。此外,通过将改进的巴特勒-伏尔...

解读: 该研究揭示的高倍率放电老化机制对阳光电源储能系统具有重要价值。针对正极集流体溶解、颗粒破裂等衰减机理,可优化PowerTitan储能系统的BMS热管理策略和充放电曲线设计。所建立的电化学-热-老化耦合模型可集成至iSolarCloud平台,实现全生命周期SOH精准预测和预防性维护。对ST系列PCS的...