← 返回
储能系统技术 储能系统 DAB ★ 5.0

基于数据驱动与机理模型的锂离子电池健康状态估计与拐点识别

State-of-health estimation and knee point identification of lithium-ion battery based on data-driven and mechanism model

作者 Yulong Ni · Kai Song · Lei Pei · Xiaoyu Li · Tiansi Wang · He Zhang · Chunbo Zhu · Jianing Xu
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 385 卷
技术分类 储能系统技术
技术标签 储能系统 DAB
相关度评分 ★★★★★ 5.0 / 5.0
关键词 An SOH estimation method using INRBO-SVR-AdaBoost is proposed.
语言:

中文摘要

准确的健康状态(SOH)估计与拐点识别对于优化电池性能及生命周期管理至关重要。本文提出了一种结合改进的基于牛顿-拉夫逊优化算法优化支持向量回归与自适应提升算法(INRBO-SVR-AdaBoost)的SOH估计方法,以及一种基于最大垂直距离法并考虑失效阈值的拐点识别方法。首先,引入三项改进以增强标准NRBO算法的全局搜索能力与收敛速度,从而使SVR方法能够获得最优参数;随后,采用AdaBoost算法对INRBO-SVR方法进行集成,进一步提高SOH估计精度。实验结果表明,INRBO-SVR-AdaBoost方法相较于其他方法具有更高的SOH估计精度,其均方根误差和平均绝对误差分别低于0.89%和0.75%。其次,在精确SOH估计的基础上,构建了融合双指数函数与二阶多项式的经验模型(SOH<sub>EM</sub>),针对不同失效阈值,计算SOH<sub>EM</sub>与线性SOH退化曲线之间的最大垂直距离(VD<sub>max,LCD</sub>);再通过计算VD<sub>max,LCD</sub>与不同失效阈值下线性拐点曲线之间的最大垂直距离(VD<sub>max,LKC</sub>),最终确定拐点位置。实验结果表明,所识别的拐点误差在46个循环以内,拐点识别精度至少达到90%,展现出良好的灵活性与精确性。所提出的高精度SOH估计方法与灵活的拐点识别方法对电池寿命预测与退役管理具有重要的指导意义。

English Abstract

Abstract Accurate state-of-health (SOH) estimation and knee points identification are crucial for optimizing battery performance and lifecycle management. An SOH estimation method combining an improved Newton-Raphson-based optimizer algorithm for optimizing support vector regression and an adaptive boosting algorithm (INRBO-SVR-AdaBoost) is proposed, as well as a knee point identification method considering failure thresholds based on the maximum vertical distance method. Firstly, three improvements are introduced to enhance the global search ability and convergence speed of the standard NRBO algorithm, enabling the SVR method to obtain optimal parameters. Then, the AdaBoost algorithm is applied to integrate the INRBO-SVR method, improving SOH estimation accuracy. Experimental results show that the INRBO-SVR-AdaBoost method provides higher SOH estimation accuracy than other methods, with root mean square error and mean absolute error both below 0.89 % and 0.75 %, respectively. Secondly, based on the accurate SOH estimation, an empirical model combining a double-exponential and a second-order polynomial ( SOH EM ) is constructed, and the maximum vertical distance ( VD max,LCD ) between SOH EM and the linear SOH degradation curve is calculated for different failure thresholds. By computing the maximum vertical distance ( VD max,LKC ) between VD max,LCD and the linear knee point curve for different failure thresholds, the final knee point is identified. Experimental results show that the identified knee points have an error within 46 cycles, with the identification accuracy of the knee points reaching at least 90 %, demonstrating strong flexibility and precision. The proposed high-precision SOH estimation method and flexible knee point identification method have significant guiding implications for battery life prediction and retirement management.
S

SunView 深度解读

该锂电池SOH估计与拐点识别技术对阳光电源ST系列储能变流器及PowerTitan系统具有重要价值。INRBO-SVR-AdaBoost算法可集成至iSolarCloud平台,实现储能系统电池健康状态精准预测(误差<0.89%),优化BMS管理策略。拐点识别方法可指导ESS全生命周期管理,精确判定电池梯次利用时机(准确率≥90%),降低运维成本。该技术亦可应用于充电桩电池监测,提升设备可靠性,支撑阳光电源储能系统智能运维与资产管理能力提升。