← 返回
一种基于非侵入式负荷监测的乳制品行业负荷调度框架
A non-intrusive load monitoring-enabled framework for load scheduling in the dairy industry
| 作者 | Apostolos Vavouri · Lina Stankovi · Vladimir Stankovi |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 398 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 DAB |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Setting context for load scheduling of agricultural technology through co-creation. |
语言:
中文摘要
摘要 农业产业是二氧化碳排放的重要来源,其中乳制品生产在英国占农业总产出的15%以上。根据联合国关于负责任消费以及可负担且清洁能源的可持续发展目标,全球正在优先推进农业领域的脱碳进程,而可再生能源、储能系统与负荷灵活性的整合被广泛视为实现净零排放的可行解决方案。由于设备缺乏标准化以及现场可再生能源的广泛应用,相较于住宅和商业建筑,农业耗能过程的分析与优化仍面临巨大挑战。与以往研究相比——这些研究往往视角狭窄、未纳入终端用户参与、未考虑多样且频繁变化的日常高能耗活动,或难以规模化应用——本文提出了一种新颖的、基于深度学习的、数据驱动的、模块化的非侵入式负荷监测(NILM)支持的方法,该方法通过与农场及农业科技利益相关方协同共创来确立应用场景。所提出的方法利用迁移学习,在极低采样频率(30分钟)下实现精确且可扩展的负荷分解,并结合可再生能源发电预测与细粒度区域碳足迹预测,对耗能过程进行调度,从而同时最小化电网电力进口总量与碳足迹。对英国三个配备可再生能源设施、使用多样化非标乳制品设备的小型至中大型奶牛场的研究结果表明:在识别出可调节负荷的基础上,采用完全非侵入式、可扩展的协同共创负荷调度方法,即使在极低频率(30分钟)的负荷分解场景下,仍能有效维持系统实用性。与当前三个农场的实际能源使用情况相比,所提出的系统可实现超过30%的用电成本与碳足迹降低,为农业领域迈向无需侵入式改造、无需资本投入的非侵入式负荷监测系统铺平了道路。
English Abstract
Abstract The agricultural industry is an important contributor to CO 2 emissions, with dairy accounting for over 15 % of total agricultural output in the United Kingdom (UK). In line with the United Nations’ Sustainable Development Goals for responsible consumption, and affordable and clean energy, decarbonisation of agriculture is being prioritised around the world, with integration of renewables, energy storage systems, and load flexibility widely recognised as viable solutions to achieve net-zero. Analysis and optimisation of energy-consuming agri-processes remains a huge challenge — compared to residential and commercial buildings — due to non-standardised equipment and the emergence of on-site renewables. In contrast to previous studies that are narrow-focused, do not involve end-users, do not consider the diverse and largely varying day-to-day energy-intensive activities, or are not applicable at scale, this article proposes a novel, deep learning-based, data-driven, modular non-intrusive load monitoring (NILM)-enabled approach, where context is set through co-creation with farms and agritech. The proposed approach enables accurate and scalable load disaggregation at very-low frequencies (30-min), through transfer learning, and scheduling of energy-consuming processes, which minimises, simultaneously, total electricity import and carbon footprint, based on renewable production prediction, and granular regional carbon footprint forecasting. Findings from three small to medium/large-scale dairy farms in the UK with renewables and diverse non-standardised dairy equipment demonstrated that through the completely non-intrusive and scalable co-created load scheduling approach based on identified flexible loads, utility is preserved under a very-low frequency (30-min) disaggregation scenario. The proposed system achieves electricity cost and carbon footprint reduction of over 30 % compared to current energy practices on the three farms, and paves the way for completely non-intrusive/no capital investment NILM-enabled systems for the agriculture industry.
S
SunView 深度解读
该NILM负荷监测技术对阳光电源储能系统具有重要应用价值。通过深度学习实现30分钟低频负荷分解,可与ST系列PCS及PowerTitan储能系统深度融合,优化充放电策略。研究中实现的30%以上电费和碳排放削减,验证了储能系统配合负荷调度的经济性。该框架的非侵入式、可扩展特性,可集成至iSolarCloud平台,为农业光储应用提供智能负荷管理方案,推动GFM控制策略在可再生能源并网场景的优化,助力农业领域零碳目标实现。