← 返回
基于低成本高能量密度深共熔溶剂的季节性热化学储能
Seasonal Thermochemical Energy Storage with Affordable and High-Energy-Density Deep Eutectic Solvents
| 作者 | Yunren Sui · Zhixiong Ding · Zengguang Sui · Haosheng Lin · Fuxiang Li · Wei Wu |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 386 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 DAB |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Crystallization-free deep [eutectic](https://www.sciencedirect.com/topics/earth-and-planetary-sciences/eutectics "Learn more about eutectic from ScienceDirect's AI-generated Topic Pages") solvents investigated for seasonal energy storage. |
语言:
中文摘要
摘要 季节性热能储存技术在解决能源需求与供给在不同季节之间的时间和强度不匹配方面具有巨大潜力。吸收式热能储存因其高储能密度(ESD)和极低的能量损失,适用于长期储能,但面临结晶、较高的平准化成本以及放电速率下降等挑战。为克服这些局限,本研究首次提出一种采用新型深共熔溶剂(DESs)的多单元吸收式热能储存系统(MATES),以实现无结晶、低成本且稳定的能量储存。针对跨季节应用场景,该装置采用多单元结构并结合一次通过式放电策略,以确保稳定的输出;所提出的基于DES的工作流体具有较低的结晶温度和成本,进一步提升了储能密度和经济可行性。本文建立了MATES的时间依赖性数学模型,并通过高精度方法进行了验证,进而结合实际气象条件研究了其全年制冷性能。冬季较低的环境温度使得MATES能够有效利用低于50°C的低温太阳能。在所筛选出的DES中,Beta-EG表现出显著的浓度滑移特性以及最高的储能密度,达549.6 kJ/kg。随着溶液充电量的增加或太阳能集热器安装面积的减少,储能密度持续下降,而单位冷却潜能则呈现相反趋势。多目标优化结果确定了最优设计方案,实现了1.71 kWh/m²/天的单位冷却潜能和456.2 kJ/kg的储能密度。与显热和潜热储能相比,基于DES的MATES具有更优越的储能密度和平准化储能成本(0.032–0.040 USD/kWh),凸显其在高密度、低成本季节性储能方面的应用前景。
English Abstract
Abstract Seasonal thermal energy storage technologies offer significant potential for addressing the temporal and intensity mismatch between energy demands and supplies across seasons. Absorption thermal energy storage , noted for its high energy storage density (ESD) and minimal energy loss , is well-suited for long-term energy storage but faces challenges including crystallization, high levelized cost, and declining discharging rates. To address these limitations, this study first proposes a multi-cell absorption thermal energy storage (MATES) using novel deep eutectic solvents (DESs) to achieve crystallization-free, cost-effective, and stable energy storage. For cross-seasonal scenarios, the device employs a multi-cell configuration with a once-through discharging strategy to ensure stable output; the proposed DES-based working fluids with low crystallization points and low costs further enhance the ESD and economic viability. A time-dependent mathematical model of the MATES has been developed and verified with high accuracies, by which the annual cooling performance is investigated considering real weather. The low ambient temperatures during winter allow the MATES to effectively harness low-grade solar energy below 50 °C. Among the identified DESs, Beta-EG demonstrates a substantial concentration glide and the highest ESD of 549.6 kJ/kg. As the solution charge rises or solar collector installation decreases, the ESD keeps decreasing while the unit cooling potential exhibits an opposite trend. A multi-objective optimization identifies the optimal design achieving a unit cooling potential of 1.71 kWh/m 2 /day and an ESD of 456.2 kJ/kg. In comparison to sensible and latent thermal energy storage, MATESs with DESs provide superior ESDs and competitive levelized cost of storage (0.032–0.040 USD/kWh), highlighting its potential for high-density and cost-effective seasonal energy storage.
S
SunView 深度解读
该季节性热化学储能技术对阳光电源储能系统具有重要启示价值。研究提出的多单元吸收式储能(MATES)与深共熔溶剂方案,能量密度达549.6 kJ/kg,平准化成本仅0.032-0.040美元/kWh,可为ST系列PCS和PowerTitan系统提供跨季节储能方案设计参考。其低温(<50°C)太阳能利用特性与SG系列光伏逆变器结合,可构建光热-光伏-储能一体化系统。多目标优化策略对iSolarCloud平台的储能容量配置算法具有借鉴意义,有助于提升长周期储能经济性和系统稳定性。