← 返回
一种联合估计锂离子电池SOC与SOH的框架:消除对初始状态的依赖
A framework for joint SOC and SOH estimation of lithium-ion battery: Eliminating the dependency on initial states
| 作者 | Xiaoyong Zeng · Yaoke Sun · Xiangyang Xia · Laien Chen |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 377 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 电池管理系统BMS |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Battery dynamics are modeled with two RBF-ARXMs linking SOC SOH and observations. |
语言:
中文摘要
基于模型的方法被广泛用于电池状态估计,构成了电池管理系统的基础。然而,这些方法的有效性依赖于准确的初始状态设定,初始状态不准确可能导致严重的不稳定甚至发散,从而对电池安全构成重大威胁。由于状态荷电(SOC)与健康状态(SOH)之间存在相互依赖关系,这一问题在SOC与SOH的联合估计中尤为突出。本研究致力于消除对初始状态的依赖。首先,构建了两个具有外部输入的径向基函数自回归模型(RBF-ARXM),以捕捉电池的非线性动态特性,并建立SOC、SOH与观测值之间的关联关系。基于这些模型,推导出有效的目标分布,并提出采用马尔可夫链蒙特卡洛方法对初始SOC和SOH值进行采样与推断。最后,开发了一种SOC与SOH的联合估计方法,该方法结合无迹卡尔曼滤波器与RBF-ARXM实现协同估计。在牛津大学和NASA电池老化数据集上的验证结果表明,所提出的方法在整个电池生命周期内均能实现可靠的初始状态推断以及SOC-SOH联合估计。此外,在A123动态驾驶数据集上的验证表明,该方法在复杂工况下仍能实现精确的初始SOC推断与SOC估计。
English Abstract
Abstract Model-based methods are prevalently used for estimating battery states, which forms the foundation of battery management systems . However, the efficacy of these methods relies on accurate initial state settings, and inaccuracies can precipitate substantial instability and even divergence, thereby posing serious threats to battery safety. This issue is particularly acute in the joint estimation of state of charge (SOC) and state of health (SOH) due to their interdependence. This study endeavors to obviate this dependency on initial states. Initially, two radial basis function auto-regressive models with exogenous inputs (RBF-ARXMs) are formulated to capture battery nonlinear dynamics and establish correlations between SOC, SOH, and observations. Building on these models, we derive effective target distributions and advocate for applying a Markov chain Monte Carlo method to sample and infer initial SOC and SOH values. Finally, a co-estimation method for SOC and SOH is developed, utilizing the unscented Kalman filter in conjunction with an RBF-ARXM. Validation on the Oxford and NASA degradation datasets demonstrates that the proposed methods achieve reliable initial state inference and SOC-SOH co-estimation throughout the batteries’ life cycle. Additionally, validation on the A123 dynamic driving dataset shows that our methods provide accurate initial SOC inference and SOC estimation under complex conditions.
S
SunView 深度解读
该SOC/SOH联合估算框架对阳光电源ST系列储能变流器及PowerTitan系统的BMS优化具有重要价值。通过消除初始状态依赖性,可显著提升储能系统全生命周期的状态估计精度和安全性。基于RBF-ARXM的非线性建模方法可集成至iSolarCloud平台,实现预测性维护和电池健康管理。该技术同样适用于充电桩产品的电池诊断功能,提升用户侧储能和电动汽车充电场景的可靠性,为阳光电源智慧能源管理系统提供更鲁棒的状态估计算法支撑。