← 返回
一种基于分数阶微分电压-容量曲线的锂离子电池健康状态估计新方法
A novel method for state of health estimation of lithium-ion batteries based on fractional-order differential voltage-capacity curve
| 作者 | Xugang Zhang · Xiyuan Gao · Linchao Duan · Qingshan Gong · Yan Wang · Xiuyi Ao |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 377 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 电池管理系统BMS |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | A novel method for extracting characteristic parameters (CPs) to estimate the SOH. |
语言:
中文摘要
准确估计锂离子电池的健康状态(SOH)对于确保电池管理系统稳定运行至关重要。特征参数(CPs)的提取是实现SOH精确预测的关键。传统的特征参数提取方法存在诸如参数数量少、特征提取困难等局限性。为解决上述问题,本研究将Caputo分数阶导数理论与电压-容量曲线相结合,引入分数阶微分电压-容量曲线用于特征参数的提取。此外,本文引入了v-支持向量机、弹性网络,并提出了闭环高斯过程回归方法,利用融合模型算法将这三个模型集成到一个融合模型中,从而提高SOH估计的精度。最后,我们设计了多组对比实验:将本文提取的特征参数作为输入,输入至不同模型中,以验证融合模型算法的估计精度高于其他传统方法;将不同的特征参数作为相同模型的输入,以验证本文所提取特征参数的有效性。实验结果表明,本文提出的融合模型及所提取的特征参数在SOH估计中均表现出更优的性能。
English Abstract
Abstract Accurate estimation of state of health (SOH) of lithium-ion batteries is crucial to ensure that the battery management system stably runs. Extraction of characteristic parameters (CPs) is key for accurate prediction of SOH. Traditional methods for extracting CPs have certain limitations like a small number of CPs and having some difficult for extracting features. To address the above issues, this study combines the Caputo fractional derivatives theory with the voltage-capacity curve, introducing the fractional-order differential voltage-capacity curve for CPs extraction. Additionally, this article introduces v -support vector machine, elastic net, and proposes closed-loop gaussian process regression, utilizing a fusion model algorithm to combine these three models into one fusion model, enhancing the SOH estimation accuracy. Finally, we did different sets of comparison experiments: using the CPs extracted in this paper as inputs to different models to verify that the estimation accuracy of the fusion model algorithm is higher than that of other traditional methods; using different CPs as the inputs to the same model to verify the validity of the CPs extracted in this paper. The experimental results show that both the fusion model and the CPs proposed in this paper have better performance in estimating SOH.
S
SunView 深度解读
该分数阶微分电压-容量曲线SOH估算技术对阳光电源ST系列储能变流器及PowerTitan系统的BMS优化具有重要价值。通过提取更丰富的特征参数并采用融合模型算法,可显著提升电池健康状态预测精度,增强储能系统全生命周期管理能力。该方法可集成至iSolarCloud平台实现预测性维护,降低储能电站运维成本,延长电池使用寿命,同时为充电桩产品的电池诊断功能提供算法优化思路,提升阳光电源储能及充电解决方案的市场竞争力。