← 返回
储能系统技术 ★ 4.0

锂离子电池高倍率放电老化机理与解析建模:侧重于正极集流体溶解与颗粒断裂

Mechanism and analytical modeling of high-rate discharge aging in lithium-ion batteries: Emphasizing cathode current collector dissolution and particle fracture

语言:

中文摘要

摘要 以LiMnxNiyCozO2(NMC)为正极材料的能量型电池因其优异的能量密度特性,被广泛应用于电动汽车(EV)中。随着高功率应用场景的不断增加,研究能量型电池在高倍率放电条件下的老化机理,并对老化现象进行定量分析,已成为一项至关重要的任务。本研究首先在1C、2C和3C三种放电倍率下开展了加速老化实验,并结合多种宏观与微观测试技术,对电池老化的物理过程进行了系统深入的分析。结果表明,正极集流体溶解、铝元素在负极的沉积以及正极颗粒的破裂是导致容量衰减的主要原因。此外,通过将改进的巴特勒-伏尔默(BV)方程与现有的扩展单粒子模型(ESPM)相结合,显著提升了高倍率放电条件下电压响应的模拟精度。最后,综合上述老化机理、电化学模型以及热阻网络模型,构建了一个完整的电化学-热-老化耦合模型。在不同放电老化速率下的验证结果表明,该模型能够在整个电池生命周期内实现高精度的健康状态(SOH)估计,并准确模拟多倍率下的放电曲线。

English Abstract

Abstract Energy-type batteries with cathode materials of LiMn x Ni y Co z O 2 (NMC) are widely utilized in electric vehicles (EVs) owing to their excellent energy density characteristics. With the increasing number of high-power application scenarios, it has become crucial to investigate the aging mechanisms of energy-type batteries under high-rate discharge conditions and to quantitatively analyze the aging phenomena. This study first conducts accelerated aging tests at 1C, 2C, and 3C discharge rates, and employs various macro and micro testing techniques to thoroughly analyze the physical processes of battery aging. The results indicate that cathode current collector dissolution, Al deposition on the anode, and cathode particle fracture are the primary causes of capacity decay. Additionally, by integrating the modified Butler-Volmer (BV) equation with the existing extended single particle model (ESPM), the accuracy of voltage simulation at high discharge rates is enhanced. Finally, combining the aforementioned aging mechanisms, the electrochemical model, and the thermal resistance network model, a comprehensive electrochemical-thermal-aging coupled model is established. Validation results at different discharge aging rates demonstrate that the model can achieve high-accuracy state of health (SOH) estimation throughout the entire battery lifecycle and accurately simulate discharge curves at various rates.
S

SunView 深度解读

该研究揭示的高倍率放电老化机制对阳光电源储能系统具有重要价值。针对正极集流体溶解、颗粒破裂等衰减机理,可优化PowerTitan储能系统的BMS热管理策略和充放电曲线设计。所建立的电化学-热-老化耦合模型可集成至iSolarCloud平台,实现全生命周期SOH精准预测和预防性维护。对ST系列PCS的功率调度策略和充电桩快充协议优化同样具有指导意义,可通过动态倍率控制延长电池寿命,提升系统经济性。