找到 34 条结果 · Applied Energy
大型地下氢气储存的比较技术经济分析
Comparative techno-economic analysis of large-scale underground hydrogen storage
Yashuai Huang · Xilin Shi · Shijie Zhuc · Xinxing Wei 等9人 · Applied Energy · 2025年1月 · Vol.400
摘要 氢气作为一种兼具储能介质、原料和燃料多重角色的能源载体,目前受到广泛关注。地下氢气储存(UHS)被认为是大规模氢气储存的一种安全、经济且高效的解决方案,然而相关技术经济研究仍较为有限。本文基于工程案例,建立了针对枯竭气藏(DGR)、盐穴(SC)和衬砌岩洞(LRC)三种储氢方式的氢气储存平准化成本(LCOHS)计算模型。研究重点分析了氢气储存规模及注采频率对LCOHS的影响,旨在从经济角度为能源管理与政策制定提供数据支持。结果表明:(1)当储存容量为10^7 kg、每年完成一次注采循环时,盐...
解读: 该地下储氢技术研究对阳光电源储能系统具有战略参考价值。研究表明盐穴和岩洞储氢在高频注入-提取场景下成本优势显著(0.31-0.38美元/kg),这与我司ST系列PCS和PowerTitan储能系统的快速响应特性高度契合。可探索将地下储氢与电化学储能形成互补:电化学储能负责高频调节,地下储氢承担季节性...
重力储能:介质分类、效率影响因素、比较与选型
Gravitational energy storage: Media taxonomy, efficiency factors, comparison and selection
Xixi Wang · Haitao Yang · Xingbin Lia · Zhigan Denga 等7人 · Applied Energy · 2025年1月 · Vol.395
摘要 能源储存技术(EST)作为提供平稳连续电力的关键手段,随着可再生能源的快速发展而受到广泛关注。重力储能(GES)因其原理简单、成本低、容量大、效率高且安全性好,已成为一种新兴的机械式能源储存技术。本文根据不同的储能介质及其计算原理,将重力储能分为流体重力储能、固体重力储能和颗粒重力储能三类,首次定义了颗粒重力储能,并对其相关技术进行了深入分析与讨论。通过对比不同类型重力储能技术的特点、发展现状、优缺点,归纳总结了影响其效率的关键因素以及比较与选型方法。研究表明,重力储能可与其他储能技术形成...
解读: 重力储能作为新兴机械储能技术,其大容量、高效率特性可与阳光电源ST系列PCS及PowerTitan储能系统形成互补方案。文中提出的效率影响因素分析对优化我司储能变流器的能量管理策略具有参考价值,特别是在长时储能场景下,可结合GFM控制技术提升系统稳定性。重力储能的LCOS评估方法论可应用于iSola...
一种考虑台风灾害的韧性导向型海上风电场与输电网络协同规划多场景分布鲁棒模型
A multi-scenario distributionally robust model for resilience-oriented offshore wind farms and transmission network integrated planning considering typhoon disasters
Yang Yuan · Heng Zhang · Shenxi Zhang · Haozhong Cheng 等7人 · Applied Energy · 2025年1月 · Vol.392
现有韧性导向型海上风电场与输电网络协同规划(ROWF&TNIP)模型在刻画台风灾害期间风力发电和电网故障相关不确定性方面缺乏细致描述,且在提升系统韧性时往往表现出较强的保守性。为克服上述局限,本文提出一种考虑台风灾害的多场景分布鲁棒ROWF&TNIP模型。该模型综合考虑正常运行场景(NOS)和台风灾害场景(TDS)下风力发电与电网故障的多重不确定性,以较低的保守程度实现韧性的提升。首先,构建了针对海上风电场(OWF)出力与电网故障的多场景分布鲁棒不确定性集合:基于条件风险价值(CVaR)的多场景...
解读: 该海上风电韧性规划模型对阳光电源ST系列储能系统和智能运维平台具有重要应用价值。论文提出的多场景分布鲁棒优化方法可应用于PowerTitan储能系统的台风灾害应对策略,通过CVaR不确定性集建模提升极端天气下源网荷协调能力。差异化加固模型与预防性机组组合策略可集成至iSolarCloud平台,实现海...
基于模型预测控制的梯级水电-光伏互补系统实时调度框架
A real-time scheduling framework of cascade hydropower-photovoltaic power complementary systems based on model predictive control
Chengguo Su · Li Li · Taiheng Zhang · Quan Sui 等5人 · Applied Energy · 2025年1月 · Vol.392
摘要 光伏(PV)发电与水电的联合运行已成为促进可再生能源消纳的有效途径。在实时调度过程中提升对水电和光伏发电的管理与控制能力,有助于满足电网预期的电力需求。然而,应对光伏发电出力和径流固有的不确定性仍是一项重大挑战。本文提出了一种基于模型预测控制(MPC)的梯级水电-光伏(CH-PVP)互补系统实时调度框架。采用Wasserstein生成对抗网络(WGAN)对径流和光伏发电出力进行预测,在此基础上构建了考虑动态水流滞时和水电机组振动区的CH-PVP互补系统实时调度模型,旨在最小化功率偏差并减少...
解读: 该MPC实时调度框架对阳光电源水光互补系统具有重要价值。WGAN预测模型可集成至iSolarCloud平台,提升光伏出力预测精度;动态水延时建模思路可应用于ST储能系统的充放电调度,优化SG逆变器与水电的协调控制策略。MILP快速求解技术(<1分钟)适配GFM/VSG控制的实时响应需求,降低功率偏差...
基于预测的风-光互补电解制氢系统的设计与优化调度
Design and optimal scheduling of a forecasting-based wind-and-photovoltaic complementary electrolytic hydrogen production system
Weichao Dong · Hexu Sun · Zheng Li · Huifang Yang · Applied Energy · 2025年1月 · Vol.392
摘要 氢能可有效缓解能源短缺并减少环境污染。本文首次设计了一个完整的风能与光伏(PV)互补制氢系统,包括高效的发电系统模型、精确的预测模型、优良的优化调度策略以及高效的催化剂。该离网型互补发电系统在直流母线上实现。提出了一种混合预测模型,结合长短期记忆网络(LSTM)、分位数回归(QR)和正则藤copula方法。LSTM与QR相结合可获得边缘概率密度函数(PDF)。利用正则藤copula建立风能与光伏能源之间的相关性,并将边缘PDF与其相关性结构结合,实现对风能和光伏出力的联合预测。提出一种基于...
解读: 该风光制氢系统对阳光电源ST系列储能变流器和SG光伏逆变器具有重要应用价值。文中直流母线离网架构可结合我司1500V系统和三电平拓扑技术,提升功率转换效率。LSTM-DRL多目标优化调度策略可集成至iSolarCloud平台,实现风光出力预测与氢储能协同控制。研究的3.1美元/kg制氢成本为Powe...
基于随机森林可解释人工智能揭示储能与可再生能源在脱碳进程中的协同作用
Understanding the synergy of energy storage and renewables in decarbonization via random forest-based explainable AI
Zili Chen · Zhaoyuan Wu · Lanyi Wei · Linyan Yang 等6人 · Applied Energy · 2025年1月 · Vol.390
摘要 可再生能源(RE)与储能系统(ESS)的协调发展对于低碳转型至关重要。除了最优规划方案外,理解规划结果背后的深层原因对于提升决策透明度与可靠性同样关键。本研究探讨了在不同脱碳阶段中可再生能源与中长期储能(MTES)之间协同关系的演变过程,提出了一种可解释的分析框架,用于归因并分析影响规划结果的关键因素。通过采用随机森林(Random Forest, RF)方法,该框架识别出在不同边界条件下(如碳排放限额、资源禀赋和经济约束)驱动可再生能源—储能协同效应的核心因素,从而深入揭示时间与空间因素...
解读: 该研究对阳光电源储能规划具有重要指导意义。研究揭示长时储能(LDES>100h)在新能源富集区域的季节性平衡价值,与PowerTitan液流储能系统的应用场景高度契合;短时储能在火电主导区域应对日内波动的需求,可通过ST系列PCS的快速响应能力实现。随机森林可解释性框架可集成至iSolarCloud...
基于先验知识的大规模超高清光伏板分割数据集增强框架
A large-scale ultra-high-resolution segmentation dataset augmentation framework for photovoltaic panels in photovoltaic power plants based on priori knowledge
Ruiqing Yang · Guojin He · Ranyu Yin · Guizhou Wang 等9人 · Applied Energy · 2025年1月 · Vol.390
摘要 当前大多数提升模型精度的研究主要集中在模型本身的优化上,往往忽视了数据集质量的关键作用,尤其是在遥感大数据背景下。许多关于光伏发电(PV)的大规模提取研究通常仅关注光伏电站边界的粗略勾画,这限制了更深入的下游分析潜力。本文提出了一种针对光伏电站内部光伏板进行细粒度提取的框架,而非仅仅捕捉电站的外部轮廓。通过聚焦于单个光伏板级别的分割,该方法为下游应用(如发电量估算和空间布局优化)提供了更为精确的评估基础。该框架融合了先验知识,以应对地表覆盖、成像条件以及背景干扰所带来的挑战。一种创新的标签...
解读: 该超高分辨率光伏板分割框架对阳光电源iSolarCloud智能运维平台具有重要应用价值。通过面板级精细识别,可显著提升SG系列逆拟器的MPPT优化策略精度,实现组串级故障诊断与发电量评估。数据集质量提升(78%→92%)为预测性维护算法提供可靠训练基础,结合先验知识的标注效率提升75%可加速电站数字...
机器学习预测三重管相变材料蓄热系统熔化响应时间的潜力
The potential of machine learning to predict melting response time of phase change materials in triplex-tube latent thermal energy storage systems
Peiliang Yan · Chuang Wen · Hongbing Ding · Xuehui Wang 等5人 · Applied Energy · 2025年1月 · Vol.390
准确预测熔化响应时间对于优化热能储存系统至关重要,这类系统在解决建筑环境中热能供需之间的时间不匹配问题中发挥着关键作用。本研究旨在定量预测一种新型三重管热能储存系统的熔化响应时间,该系统结合了相变材料和Y形翅片以增强传热性能。基于焓-孔隙度方法建立了数值模型来模拟熔化过程,在不同的设计和运行条件下共生成60个案例的数据集,其熔化响应时间范围为15至45分钟。研究的关键参数包括翅片角度(10°–30°)、翅片宽度(5–15 mm)以及传热流体温度(60 °C–80 °C)。在模型构建之前,验证了变...
解读: 该相变储能系统的机器学习优化技术对阳光电源ST系列储能变流器和PowerTitan液冷储能系统具有重要借鉴价值。研究中XGBoost算法对热响应时间的92%预测精度,可应用于我司液冷储能系统的热管理优化,特别是三电平拓扑功率器件的散热预测。传热流体温度和翅片宽度作为主导因素的发现,可指导PowerT...
从宏观到微观:中国沿海风能潜力的多尺度评估方法
From macro to micro: A multi-scale method for assessing coastal wind energy potential in China
Li-Rong Deng · Zhi-Li Ding · Yang Fu · Applied Energy · 2025年1月 · Vol.389
摘要 随着海上风电向更深水域、集群化部署和更大单机容量方向发展,风能建设的复杂性日益增加,对风能资源评估方法的全面性提出了更高要求。当前的风能资源评估通常局限于宏观尺度或微观尺度,往往忽略了密集风电场的尾流效应。此外,基于卫星数据的微观尺度风资源评估未考虑区域间风切变指数的差异,导致风速评估存在偏差。因此,本研究提出一种综合性的风能资源评估框架,将宏观尺度的低分辨率分析与微观尺度的高分辨率评估相结合。在宏观层面,除了经典的风能指标、变率指标和成本指标外,特别考虑了现有海上风电场区域及其潜在尾流效...
解读: 该多尺度海上风电评估方法对阳光电源风电变流器及储能系统具有重要应用价值。研究揭示的尾流效应区域是风场区域3倍,南方海域尾流更显著,这为ST系列储能PCS在海上风电场的平滑出力波动、削峰填谷提供了精准配置依据。100米轮毂高度的风速精细化评估可优化PowerTitan储能系统容量设计。台湾海峡等高CO...
基于卫星图像纹理特征与迁移学习的区域光伏功率预测优化高效方法
An efficient approach for regional photovoltaic power forecasting optimization based on texture features from satellite images and transfer learning
Yang Xi · Jianyong Zheng · Fei Mei · Gareth Taylor 等5人 · Applied Energy · 2025年1月 · Vol.385
准确高效的区域光伏发电功率预测对于提升光伏电力供应的稳定性并扩大其市场份额至关重要。近年来的研究进展已将卫星与地面观测数据的特征相结合,基于混合神经网络的模型展现出优异的预测性能。然而,仍存在若干挑战:直接从卫星图像中提取的空间特征往往缺乏细节,且大多数现有预测方法需要大量电力数据样本。因此,在云量变化速率较高的情况下,预测精度易受相位滞后的影响,同时由于区域光伏装置数量庞大且分布分散,计算负担也显著增加。为解决上述问题,本研究提出一种创新的时空特征,该特征将从卫星图像重构的纹理特征(TFs)与...
解读: 该区域光伏功率预测技术对阳光电源iSolarCloud智慧运维平台具有重要应用价值。通过卫星图像纹理特征与迁移学习结合,可显著提升SG系列逆变器集群的功率预测精度(RMSE提升72%)并降低相位滞后,特别适用于分布式光伏电站管理。该算法计算效率提升10倍,可与ST储能系统协同优化充放电策略,减少云层...
评估光伏与太阳能热比例对组合式太阳能系统性能、成本和排放的影响
Assessing the effects of photovoltaic and solar thermal ratios on performance, cost, and emissions in combined solar configurations
Arash Kazemian · Hongxing Yang · Changying Xiang · Applied Energy · 2025年1月 · Vol.384
摘要 本研究提出了一种集成太阳能热增强装置的光伏光热系统(Photovoltaic Thermal with Solar Thermal Enhancer, PVT-STE),旨在提升传统光伏光热(PVT)系统的性能。通过引入太阳能热增强器,PVT-STE系统采用独特的顺序传热机制,显著提高了热效率和电效率。该系统结构设计使传热流体首先流经PVT模块,随后进入增强型太阳能热(ST)模块,从而获得更高的流体温度,适用于从住宅到工业的多种应用场景。系统配置涵盖从完全太阳能热模式到全光伏光热模式之间的...
解读: 该PVT-STE光热光伏耦合系统研究对阳光电源具有重要启示。系统通过热流体串联传热机制实现光伏与热能协同优化,与我司SG系列逆变器的MPPT技术和ST系列储能变流器可形成互补方案。研究揭示的光伏-热能配比权衡特性,可指导我司开发智能能量管理算法,通过iSolarCloud平台实时优化电热输出比例。特...
不同两相流关联式下高温热泵系统换热器设计与性能评估:4E分析
Heat exchanger design and performance evaluation for a high-temperature heat pump system under different two-phase correlations: 4E analysis
Ding Wu · Bo Ma · Xiaohui Huang · Xian Wu 等7人 · Applied Energy · 2025年1月 · Vol.384
摘要 为区域供热并促进可再生能源电力的消纳,高温热泵技术预计将在由可再生能源驱动的热能储存系统中发挥关键作用。然而,目前关于高温热泵性能预测的研究通常基于特定的换热器传热关联式,难以指导在高温热泵系统的换热器设计和系统性能评估中对两相流关联式的选择与组合。本研究聚焦于不同两相流关联式的影响,针对用于部件设计和系统性能预测的8种关联式(4种流动冷凝关联式和4种流动沸腾关联式)开展了对比研究。结果表明,对于设计工况下的冷凝器或蒸发器,其尺寸、成本及碳排放均显著受到不同两相流关联式的影响。在16组两相...
解读: 该高温热泵4E分析技术对阳光电源储能系统热管理具有重要参考价值。PowerTitan等大型储能系统面临显著热管理挑战,研究揭示的两相流换热关联式选择对换热器设计、成本及碳排放的影响,可直接应用于ST系列PCS和集装箱式ESS的冷却系统优化。特别是非设计工况下9.88%的制热量波动和6.76%的火用效...
水风光混合系统中现有水电站扩容优化的解析方法:以雅砻江流域为例
Analytical method for optimizing capacity expansion of existing hydropower plants in hydro-wind-photovoltaic hybrid system: A case study in the Yalong River basin
Chen Wu · Pan Liu · Qian Cheng · Zhikai Yang 等11人 · Applied Energy · 2025年1月 · Vol.383
摘要 水电可通过构建水-风-光混合能源系统,有效整合具有间歇性的风电和光伏(PV)发电。随着风电和光伏电站规模的不断扩大,扩大水电装机容量变得尤为关键。然而,传统的扩容数值方法需要高时间分辨率的输入数据以及复杂的模拟计算。为解决这一问题,本文提出一种无需高分辨率输入数据的解析方法,用于推导水电站最优扩容规模,便于实际应用并支持敏感性分析。首先,基于历史运行数据,分别采用多项式函数和线性函数对水电出力及风电-光伏弃电率随水电扩容规模的变化关系进行估计;其次,结合净现值法,建立考虑总发电量(包括水电...
解读: 该水风光混合系统容量优化方法对阳光电源具有重要参考价值。研究揭示的弃电率与容量扩展关系,可指导我们ST系列储能系统在水风光互补场景的容量配置策略。文中敏感性分析方法(电价敏感度为运维成本11倍)可应用于PowerTitan储能电站的经济性评估模型。特别是无需高时间分辨率数据的解析法,可集成到iSol...
风电场在中长期滚动交易中的策略性投标:一种双层多智能体深度强化学习方法
Strategic bidding of wind farms in medium-to-long-term rolling transactions: A bi-level multi-agent deep reinforcement learning approach
Yi Zheng · Jian Wang · Chengmin Wang · Chunyi Huang 等6人 · Applied Energy · 2025年1月 · Vol.383
摘要 随着可再生能源在电力市场中渗透率的不断提高,边际电价受到抑制,给风电生产商的盈利能力带来了挑战。为此,有效的中长期(MLT)滚动交易能够对冲现货市场价格风险,提升盈利水平。然而,传统的投标方法往往难以捕捉风电出力及交易动态在较长时间跨度内的复杂不确定性。本文提出了一种专为优化风电中长期滚动交易而设计的双层多智能体深度强化学习(DRL)方法。该方法创新性地将Black–Scholes模型与Hamiltonian函数相结合,构建了一个最优决策框架,能够在短期投标效率与长期战略定位之间实现平衡。...
解读: 该深度强化学习竞价策略对阳光电源储能系统(ST系列PCS、PowerTitan)具有重要应用价值。通过双层多智能体优化框架,可提升风储联合系统在中长期电力市场的收益能力,有效对冲现货价格风险。其时空建模技术可集成至iSolarCloud平台,实现储能参与市场交易的智能决策,优化充放电策略。结合阳光电...
基于知识蒸馏与自适应模型的锂离子电池温度分布学习
Temperature distribution learning of Li-ion batteries using knowledge distillation and self-adaptive models
Rufan Yang · Hung Dinh Nguyen · Applied Energy · 2025年1月 · Vol.382
摘要 温度监测与估计在电池热管理系统中至关重要,有助于优化电动汽车(EV)和固定式储能系统中电池的性能并延长其使用寿命。由于存在多种数据驱动模型,每种模型仅反映热分布的某一侧面(或局部),因此亟需一个能够提供整体分布的统一模型。考虑到电动汽车车载计算资源有限,该统一模型不能过于庞大。在此类约束条件下,本研究提出了一种用于学习锂离子电池温度分布的新颖框架,该框架结合了知识蒸馏方法与自适应控制机制。所提出的框架克服了传统温度计算方法的局限性,即对精确物理参数的需求以及缺乏实时适应能力。我们的方法将多...
解读: 该锂电池温度分布学习技术对阳光电源ST系列储能系统和PowerTitan产品具有重要应用价值。知识蒸馏框架可将复杂热管理模型压缩部署至BMS边缘计算单元,自适应机制能实时优化温度监测精度。该方法可增强储能PCS的电池热失控预警能力,延长电芯寿命,并为iSolarCloud平台提供更精准的预测性维护数...
无翅片仿肠结构装置实现高功率密度与高能量密度的相变储热
Finless intestine-mimic devices for high power density and high energy density latent heat storage
Yang Tian · Xianglei Liu · Qiao Xu · Qinyang Luo 等9人 · Applied Energy · 2025年1月 · Vol.382
摘要 相变储热(LHS)技术为解决间歇性热能供应与连续需求之间的不匹配问题提供了一种可行方案,但其充热/放热过程缓慢,导致功率密度较低。尽管已有多种翅片结构被提出以应对这一挑战,但通常以牺牲能量密度和增加系统复杂性为代价。受肠道内部结构与功能的启发,本文提出一种新型无翅片双梯度LHS装置,并集成氧化镁纳米颗粒(MgO NPs),以同时实现高能量密度和高功率密度。通过协同降低界面热阻并增加纳米颗粒周围原子密度,在LiNO3-KCl共晶盐中添加4 wt%的MgO纳米颗粒,使其导热系数和储能密度分别提...
解读: 该仿肠道无翅片相变储热技术对阳光电源储能系统具有重要借鉴价值。其通过纳米颗粒增强导热性和结构优化提升功率密度114.2%的思路,可应用于PowerTitan液冷储能系统的热管理优化,特别是电池簇温控设计。双梯度结构与涡流增强机制启发ST系列PCS散热方案改进,有助于提升功率器件热传导效率,降低系统热...
基于微电网群租赁共享储能的主动配电网三层Stackelberg博弈调度
Trilayer Stackelberg Game Scheduling of Active Distribution Network Based on Microgrid Group Leasing Shared Energy Storage
Jinpeng Qiao · Yang Mi · Siyuan Ma · Yunhao Han 等5人 · Applied Energy · 2025年1月 · Vol.382
摘要——本文提出一种基于微电网群租赁共享储能的主动配电网三层Stackelberg博弈(SG)调度策略。在上层,配电系统运营商作为领导者,综合考虑中层和下层的电力需求来确定交易价格,从而实现主动配电网的安全运行以及削峰填谷。在中层,共享储能运营商既可作为领导者制定租赁价格,也可作为跟随者响应交易价格,以保证共享储能系统的可靠充放电与高效利用。在下层,微电网联盟作为跟随者制定租赁容量并响应交易价格,从而确保电力平衡及可再生能源的就地消纳。此外,为有效求解该三层SG模型,采用多步逆向归纳法证明了均衡...
解读: 该三层博弈调度策略对阳光电源ST系列储能变流器和PowerTitan系统具有重要应用价值。通过配网运营商-共享储能-微网群的分层博弈机制,可优化ST-PCS的充放电策略,提升储能利用率。分布式嵌套迭代算法可集成至iSolarCloud平台,实现多微网协同调度和削峰填谷。该模型为阳光电源开发共享储能租...
AM-MFF:一种基于注意力机制的多特征融合框架用于鲁棒且可解释的锂离子电池健康状态估计
AM-MFF: A multi-feature fusion framework based on attention mechanism for robust and interpretable lithium-ion battery state of health estimation
Si-Zhe Chen · Jing Liu · Haoliang Yuan · Yibin Tao 等6人 · Applied Energy · 2025年1月 · Vol.381
健康状态(SOH)是电池管理系统(BMS)中的一个关键参数。利用多种数据源可有效提升端到端SOH估计的性能。然而,现有的基于多维特征的方法未能充分挖掘不同数据源之间的内在关联。同时,大多数方法缺乏可解释性,并忽视了噪声带来的不利影响。本研究提出了一种基于注意力机制的多特征融合框架(AM-MFF),以实现鲁棒且可解释的SOH估计。AM-MFF结合了卷积神经网络(CNN)和注意力机制(AM)的优势,能够高效提取并融合健康特征,从而全面感知电池老化信息。该框架将两个运行阶段的数据作为输入,并通过两个独...
解读: 该AM-MFF锂电池SOH估算框架对阳光电源储能系统具有重要应用价值。其多特征融合与注意力机制可直接集成至ST系列PCS和PowerTitan储能系统的BMS中,提升电池健康状态预测精度和抗噪性能。多输入容错设计确保单传感器故障时系统仍可靠运行,符合大规模储能安全需求。注意力分数的可解释性有助于iS...
面向集成一致性的电池储能系统异常检测:条件驱动的集成平衡表示学习方法
Toward the ensemble consistency: Condition-driven ensemble balance representation learning and nonstationary anomaly detection for battery energy storage system
Jiayang Yang · Xu Chen · Chunhui Zhao · Applied Energy · 2025年1月 · Vol.381
在电池储能系统(BESS)中,多个锂离子电池(LIB)单体被集成为LIB模块以实现可扩展的管理。通常认为同一模块内的LIB单体应表现出作为集成体的一致性行为。为了实现对LIB单体的可靠监测,如何在捕捉各单体整体工作状态的同时保持对其间一致性关系的感知,是一项极具挑战性的任务。此外,由于充电、放电及其他运行行为引起的LIB单体非平稳特性,进一步增加了异常检测的难度。在本研究中,我们提出了一种条件驱动的集成平衡表示学习与异常检测方法,以应对上述挑战,并首次将集成分析的概念引入到LIB异常检测领域。具...
解读: 该电池组一致性异常检测技术对阳光电源ST系列储能变流器及PowerTitan系统具有重要应用价值。论文提出的集成平衡表征学习方法可集成至BMS系统,通过双层健康特征学习实时监测电芯状态差异,结合条件驱动模式划分应对充放电非平稳特性。该技术可增强iSolarCloud平台预测性维护能力,提升储能系统安...
基于深度时空相关性挖掘的风电场群短期功率预测方法
Short-term power prediction method of wind farm cluster based on deep spatiotemporal correlation mining
Da Wang · Mao Yang · Wei Zhang · Chenglian Ma 等5人 · Applied Energy · 2025年1月 · Vol.380
摘要 本文提出了一种基于时空相关性挖掘的风电场群短期功率预测方法。首先,建立了一种考虑风速和风向的空间相关性量化指标。基于该指标,构建了包含虚拟节点的图结构以表征风电场之间的空间关联关系,其中虚拟节点为输入数据增添了额外的有效信息。随后,采用图注意力网络提取风电场群的空间特征,并构建双向循环残差网络以提取时间特征,同时引入多任务学习算法优化网络输出。最后,提出了一种针对虚假预测分量的评价指标,用于评估由正负误差累积所导致的预测偏差,为发电计划的制定提供了参考依据。利用中国21个风电场群的实际数据...
解读: 该风电集群时空关联预测技术对阳光电源储能系统具有重要应用价值。通过图注意力网络挖掘风电场空间关联和双向循环网络提取时序特征,可显著提升ST系列PCS的功率预测精度至89.69%,优化PowerTitan储能系统的充放电策略。虚拟节点增强的图结构建模方法可集成至iSolarCloud平台,实现风储协同...
第 1 / 2 页