← 返回
光伏发电技术 储能系统 深度学习 ★ 5.0

基于卫星图像纹理特征与迁移学习的区域光伏功率预测优化高效方法

An efficient approach for regional photovoltaic power forecasting optimization based on texture features from satellite images and transfer learning

作者 Yang Xi · Jianyong Zheng · Fei Mei · Gareth Taylor · Ang Gao
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 385 卷
技术分类 光伏发电技术
技术标签 储能系统 深度学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Spatial-temporal features integrate texture features with ground observations.
语言:

中文摘要

准确高效的区域光伏发电功率预测对于提升光伏电力供应的稳定性并扩大其市场份额至关重要。近年来的研究进展已将卫星与地面观测数据的特征相结合,基于混合神经网络的模型展现出优异的预测性能。然而,仍存在若干挑战:直接从卫星图像中提取的空间特征往往缺乏细节,且大多数现有预测方法需要大量电力数据样本。因此,在云量变化速率较高的情况下,预测精度易受相位滞后的影响,同时由于区域光伏装置数量庞大且分布分散,计算负担也显著增加。为解决上述问题,本研究提出一种创新的时空特征,该特征将从卫星图像重构的纹理特征(TFs)与地面观测数据相结合,以减少预测中的相位滞后并提高预测精度。此外,设计了一种融合3D卷积神经网络(3D CNN)、卷积长短期记忆网络(ConvLSTM)和残差网络(ResNet)的预测模块,并结合迁移学习策略,有效缓解了计算负担。实验结果表明,与使用常规特征相比,所提方法在均方根误差(RMSE)指标上预测精度最高提升了72%,在滞后比指标上改善了26%;同时相较于传统预测策略,计算时间减少了十倍。此外,通过不同比例的训练数据对所提算法的鲁棒性进行了验证,证明其在多种运行条件下均具备可靠的预测性能。

English Abstract

Abstract Accurate and efficient forecasting of regional photovoltaic (PV) power is essential for enhancing the stability of PV electricity supply and increasing its market share. Recent advancements have integrated features from satellite and ground observations, and hybrid neural network-based models have demonstrated impressive performance. However, challenges remain: spatial features extracted directly from satellite images often lack detail, and the majority of existing forecasting methods require extensive power data samples. Consequently, forecasting accuracy suffers from phase lags , particularly under conditions of high cloud cover change rates, and computational burdens are exacerbated by the vast number and dispersed nature of regional PV installations. To address these issues, this study proposes an innovative spatial–temporal feature that combines reconstructed texture features (TFs) from satellite images with ground observations to reduce forecasting phase lags and enhance accuracy. Additionally, a forecasting module that integrates 3D CNN, ConvLSTM, and ResNet within a transfer learning strategy effectively mitigates computational burdens. The obtained results indicate that forecasting accuracy has improved by up to 72% in terms of RMSE and 26% in terms of lag ratio compared to normal features, while computation time has been reduced tenfold compared to the traditional forecasting strategy. The robustness of the proposed algorithm has also been validated with various proportions of training data, ensuring reliability under diverse operational conditions.
S

SunView 深度解读

该区域光伏功率预测技术对阳光电源iSolarCloud智慧运维平台具有重要应用价值。通过卫星图像纹理特征与迁移学习结合,可显著提升SG系列逆变器集群的功率预测精度(RMSE提升72%)并降低相位滞后,特别适用于分布式光伏电站管理。该算法计算效率提升10倍,可与ST储能系统协同优化充放电策略,减少云层变化对电网稳定性影响。迁移学习策略降低了数据依赖,为PowerTitan等大规模储能项目的预测性维护提供技术支撑,助力光储一体化解决方案的智能调度能力提升。