← 返回
风电变流技术 ★ 5.0

基于深度时空相关性挖掘的风电场群短期功率预测方法

Short-term power prediction method of wind farm cluster based on deep spatiotemporal correlation mining

语言:

中文摘要

摘要 本文提出了一种基于时空相关性挖掘的风电场群短期功率预测方法。首先,建立了一种考虑风速和风向的空间相关性量化指标。基于该指标,构建了包含虚拟节点的图结构以表征风电场之间的空间关联关系,其中虚拟节点为输入数据增添了额外的有效信息。随后,采用图注意力网络提取风电场群的空间特征,并构建双向循环残差网络以提取时间特征,同时引入多任务学习算法优化网络输出。最后,提出了一种针对虚假预测分量的评价指标,用于评估由正负误差累积所导致的预测偏差,为发电计划的制定提供了参考依据。利用中国21个风电场群的实际数据进行了实验分析,短期预测精度达到89.69%,验证了所提模型的有效性。

English Abstract

Abstract This paper proposed a short-term power prediction method based on spatiotemporal correlation mining for wind farm clusters. Firstly, a quantitative metric for spatial correlation is established, which takes into account both wind speed and direction. Based on this metric, a graph structure that includes virtual nodes is constructed to represent the spatial correlation between wind farms, with the virtual nodes adding extra useful information to the input data. Then, we employ the graph attention network to extract the spatial features of the wind farm cluster, and then construct a bidirectional recurrent residual network to extract temporal features, introducing multi-task learning algorithms to optimize the network output. Lastly, an evaluation index for the false prediction component is proposed, which assesses the erroneous predictions caused by the accumulation of positive and negative errors, offering a reference for the development of power generation plans. Experimental analysis was conducted using data from 21 wind farm clusters in China, and the short-term prediction accuracy achieved was 89.69 %, which validated the effectiveness of the proposed model.
S

SunView 深度解读

该风电集群时空关联预测技术对阳光电源储能系统具有重要应用价值。通过图注意力网络挖掘风电场空间关联和双向循环网络提取时序特征,可显著提升ST系列PCS的功率预测精度至89.69%,优化PowerTitan储能系统的充放电策略。虚拟节点增强的图结构建模方法可集成至iSolarCloud平台,实现风储协同的预测性维护。多任务学习算法和误差累积评估指标为GFM/GFL控制策略提供决策依据,提升新能源并网稳定性,支撑源网荷储一体化解决方案的智能调度能力。