← 返回
储能系统技术 储能系统 ★ 5.0

基于知识蒸馏与自适应模型的锂离子电池温度分布学习

Temperature distribution learning of Li-ion batteries using knowledge distillation and self-adaptive models

作者 Rufan Yang · Hung Dinh Nguyen
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 382 卷
技术分类 储能系统技术
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Creating a Principal model from multiple Teacher models to train a smaller accurate Student model.
语言:

中文摘要

摘要 温度监测与估计在电池热管理系统中至关重要,有助于优化电动汽车(EV)和固定式储能系统中电池的性能并延长其使用寿命。由于存在多种数据驱动模型,每种模型仅反映热分布的某一侧面(或局部),因此亟需一个能够提供整体分布的统一模型。考虑到电动汽车车载计算资源有限,该统一模型不能过于庞大。在此类约束条件下,本研究提出了一种用于学习锂离子电池温度分布的新颖框架,该框架结合了知识蒸馏方法与自适应控制机制。所提出的框架克服了传统温度计算方法的局限性,即对精确物理参数的需求以及缺乏实时适应能力。我们的方法将多种神经网络模型——包括集总式基于物理模型和基于场图像的模型——整合为一个主模型(Principal model),该模型融合了物理过程与数据驱动的洞察。随后,该主模型通过知识蒸馏将其学习所得的知识迁移至一个学生模型(Student model),后者经过优化可部署于计算资源受限的环境,如电动汽车中。此外,引入一种在线自适应机制,使学生模型能够在无需重新训练的情况下,动态调整以适应变化的运行工况。所提出的框架显著提升了锂离子电池温度分布估计的准确性与效率,从而改善了电池管理系统中的整体温度监控能力。

English Abstract

Abstract Temperature monitoring and estimation are essential in battery thermal management systems to optimize performance and extend the lifespan of batteries in electric vehicles (EV) and stationary energy storage systems . The presence of various data-driven models, each reflecting a facet (or part) of the thermal distribution, calls for the need for a unified model giving the holistic distribution. Considering the finite computation power on board an EV, the unified model must not be too large. Given such constraints, this study presents a novel framework for learning the temperature distribution of Li-ion batteries, employing a knowledge distillation approach combined with self-adaptive control. The proposed framework addresses the limitations of traditional temperature calculation methods, i.e., the requirement of precise physical parameters and the lack of real-time adaptability. Our approach integrates multiple neural network models, including lumped physics-based and field image-based types, into a Principal model that merges physical processes with data-driven insights. This Principal model then distills its knowledge into a Student model optimized for deployment in resource-constrained environments, such as electric vehicles. Furthermore, an online self-adaptation mechanism enables the Student model to adjust to changing operational conditions without the need for retraining. The proposed framework significantly enhances the accuracy and efficiency of temperature distribution estimation in Li-ion batteries, improving the overall temperature monitoring system within battery management systems .
S

SunView 深度解读

该锂电池温度分布学习技术对阳光电源ST系列储能系统和PowerTitan产品具有重要应用价值。知识蒸馏框架可将复杂热管理模型压缩部署至BMS边缘计算单元,自适应机制能实时优化温度监测精度。该方法可增强储能PCS的电池热失控预警能力,延长电芯寿命,并为iSolarCloud平台提供更精准的预测性维护数据支撑,提升大规模储能电站的安全性与经济性。