← 返回
从宏观到微观:中国沿海风能潜力的多尺度评估方法
From macro to micro: A multi-scale method for assessing coastal wind energy potential in China
| 作者 | Li-Rong Deng · Zhi-Li Ding · Yang Fu |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 389 卷 |
| 技术分类 | 风电变流技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | A multi-scale framework for offshore wind energy assessment is proposed. |
语言:
中文摘要
摘要 随着海上风电向更深水域、集群化部署和更大单机容量方向发展,风能建设的复杂性日益增加,对风能资源评估方法的全面性提出了更高要求。当前的风能资源评估通常局限于宏观尺度或微观尺度,往往忽略了密集风电场的尾流效应。此外,基于卫星数据的微观尺度风资源评估未考虑区域间风切变指数的差异,导致风速评估存在偏差。因此,本研究提出一种综合性的风能资源评估框架,将宏观尺度的低分辨率分析与微观尺度的高分辨率评估相结合。在宏观层面,除了经典的风能指标、变率指标和成本指标外,特别考虑了现有海上风电场区域及其潜在尾流效应区域,并综合这些因素构建了综合海上风能指数(COWEI)。为进一步提升宏观评估的空间分辨率,基于筛选出的高COWEI值区域,设计了改进的微观尺度评估方法。具体而言,本研究利用10米高度的合成孔径雷达(SAR)卫星风速数据,结合区域风切变特性的变化,推导出典型100米风轮机轮毂高度处的风速数据,从而更精确地评估区域风速。主要研究结果如下:(1)截至2024年6月,中国沿海已安装6516台海上风力涡轮机(OWTs),平均安装水深为14.8米,距海岸线平均距离为32.7公里;(2)尾流效应区域面积约为风电场区域的三倍,其中南部海域的尾流区域尤为显著;(3)台湾海峡被识别为最适宜开发风电场的区域;(4)宏观与微观尺度评估的融合不仅提升了对风能资源的整体认知,还能捕捉局部区域的细节特征。该多尺度评估框架展示了地球科学方法在能源研究中的综合应用,为海上风电场的规划与选址提供了坚实的科学基础。
English Abstract
Abstract As offshore wind power advances toward deeper waters, clustered deployments, and larger turbine capacities, there is an increasing demand for comprehensive wind energy resource assessment methods to meet the growing complexities of wind energy construction. Current assessments, limited to either macro-scale or micro-scale, often overlook wake effects of dense wind farms . Additionally, micro-scale wind resource assessments based on satellite data neglect regional differences in wind shear indices, leading to inaccuracies in wind speed evaluations. Therefore, this study proposes a comprehensive wind energy resource assessment framework that integrates macro-scale, low-resolution analysis with micro-scale, high-resolution evaluation. At the macro level, in addition to classic wind energy indicators, variability indicators, and cost indicators, the existing offshore wind farm areas and their potential wake effect areas are particularly considered. Then these factors are synthesized to derive the Comprehensive Offshore Wind Energy Index (COWEI). To refine the resolution of macro-scale assessment, based on the selected high-COWEI value area, an improved micro-scale assessment is designed. Specifically, we derive wind speed data at the typical 100-m wind turbine hub height from 10-m SAR satellite wind speed data, accounting for regional wind shear variations, which more precisely evaluate wind speed in regional areas. The main findings are as follows: (1) as of June 2024, 6516 offshore wind turbines (OWTs) have been installed along China’s coastline, with an average installation depth of 14.8 m and an average distance of 32.7 km from the coast; (2) wake effect areas are approximately three times the size of the wind farm areas, with significantly larger wake areas observed in southern sea regions; (3) the Taiwan Strait is identified as the most suitable region for wind farm development; (4) integration of macro-scale with micro-scale assessment not only enhances general understanding of wind resources but also captures details in local regions. This multi-scale assessment framework demonstrates the comprehensive application of geoscience methodologies in energy research and provides a solid foundation for offshore wind farm planning and site selection.
S
SunView 深度解读
该多尺度海上风电评估方法对阳光电源风电变流器及储能系统具有重要应用价值。研究揭示的尾流效应区域是风场区域3倍,南方海域尾流更显著,这为ST系列储能PCS在海上风电场的平滑出力波动、削峰填谷提供了精准配置依据。100米轮毂高度的风速精细化评估可优化PowerTitan储能系统容量设计。台湾海峡等高COWEI区域的密集风场部署需求,为阳光电源三电平拓扑变流器、GFM并网控制技术在海上风电集群的应用提供了广阔市场。该框架可与iSolarCloud平台结合,实现风储协同的智能运维和预测性维护。