← 返回
风电变流技术
★ 5.0
一种考虑台风灾害的韧性导向型海上风电场与输电网络协同规划多场景分布鲁棒模型
A multi-scenario distributionally robust model for resilience-oriented offshore wind farms and transmission network integrated planning considering typhoon disasters
语言:
中文摘要
现有韧性导向型海上风电场与输电网络协同规划(ROWF&TNIP)模型在刻画台风灾害期间风力发电和电网故障相关不确定性方面缺乏细致描述,且在提升系统韧性时往往表现出较强的保守性。为克服上述局限,本文提出一种考虑台风灾害的多场景分布鲁棒ROWF&TNIP模型。该模型综合考虑正常运行场景(NOS)和台风灾害场景(TDS)下风力发电与电网故障的多重不确定性,以较低的保守程度实现韧性的提升。首先,构建了针对海上风电场(OWF)出力与电网故障的多场景分布鲁棒不确定性集合:基于条件风险价值(CVaR)的多场景预算不确定性集合,用于刻画NOS与TDS下风电机组出力波动及机组失效的不确定性;以及1-范数电网故障不确定性集合,用于表征四种故障状态的不确定概率分布,包括高概率故障、高损失故障、TDS下的连锁故障以及NOS下的无故障状态。随后,建立了多场景分布鲁棒的ROWF&TNIP模型,采用TDS下最坏情况期望切负荷成本作为韧性指标,结合TDS与NOS下的规划成本与期望发电成本作为经济性指标,在OWF出力与电网故障最不利实现的情况下协调系统的韧性与经济效率。为进一步降低ROWF&TNIP模型的保守性,将短期源-网-荷协同措施融入规划模型,包括预防性机组组合、差异化切负荷策略以及一种创新的差异化加固模型。为此,设计了一种基于列与约束生成(C&CG)的分解算法以求解所提模型。在算例分析部分,基于IEEE-30节点系统和一个中国81节点实际系统开展了一系列对比分析与敏感性研究,验证了所提模型的有效性,并揭示了模型关键参数对规划方案韧性与经济性的影响规律。
English Abstract
Abstract Existing resilience-oriented offshore wind farms and transmission network integrated planning (ROWF&TNIP) models lack detailed characterization of the uncertainties associated with wind power and grid faults during typhoon disasters, and tend to be relatively conservative in enhancing resilience. To address these limitations, this paper proposes a multi-scenario distributionally robust model for ROWF&TNIP considering typhoon disasters. This model accounts for multiple uncertainties in wind power and grid faults under both normal operation scenario (NOS) and typhoon disaster scenario (TDS), and enhances resilience in a less conservative manner. Firstly, the multi-scenario distributionally robust uncertainty sets for offshore wind farms (OWF) output and grid fault are established: a conditional value-at-risk (CVaR) based multi-scenario budget uncertainty set to capture the uncertainties of wind turbine outputs and turbine failures under NOS and TDS, and a 1-norm grid fault uncertainty set to represent the uncertain probability distribution of four types of fault: high-probability faults, high-loss faults, cascading faults under TDS and fault-free state under NOS. Subsequently, a multi-scenario distributionally robust ROWF&TNIP model is formulated, utilizing the worst-case expected load-shedding cost under TDS as resilience index, the planning and expected generation cost under TDS and NOS as economic index. This model coordinates resilience and economic efficiency under the most adverse realization of uncertain OWF outputs and grid faults. To further mitigate the conservatism of the ROWF&TNIP model, short-term source-grid-load measures, including preventive unit commitment, differential load-shedding and an innovative differential hardening model, are integrated to the planning model. A column and constraint generation (C&CG) based decomposition algorithm is developed to solve the model. In case study section, a series of comparative and sensitivity analyses are conducted on the IEEE-30 bus system and a Chinese 81-bus system to demonstrate the effectiveness of the proposed model and reveal how key parameters of the model influence the resilience and economy of the planning results.
S
SunView 深度解读
该海上风电韧性规划模型对阳光电源ST系列储能系统和智能运维平台具有重要应用价值。论文提出的多场景分布鲁棒优化方法可应用于PowerTitan储能系统的台风灾害应对策略,通过CVaR不确定性集建模提升极端天气下源网荷协调能力。差异化加固模型与预防性机组组合策略可集成至iSolarCloud平台,实现海上风储一体化项目的预测性维护和灾前资源优化配置。分层负荷削减机制为GFM型储能变流器在电网故障时的紧急支撑控制提供决策依据,增强海上新能源并网系统韧性。