← 返回
面向集成一致性的电池储能系统异常检测:条件驱动的集成平衡表示学习方法
Toward the ensemble consistency: Condition-driven ensemble balance representation learning and nonstationary anomaly detection for battery energy storage system
| 作者 | Jiayang Yang · Xu Chen · Chunhui Zhao |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 381 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | A novel concept of ensemble analysis is introduced for anomaly detection of LIB. |
语言:
中文摘要
在电池储能系统(BESS)中,多个锂离子电池(LIB)单体被集成为LIB模块以实现可扩展的管理。通常认为同一模块内的LIB单体应表现出作为集成体的一致性行为。为了实现对LIB单体的可靠监测,如何在捕捉各单体整体工作状态的同时保持对其间一致性关系的感知,是一项极具挑战性的任务。此外,由于充电、放电及其他运行行为引起的LIB单体非平稳特性,进一步增加了异常检测的难度。在本研究中,我们提出了一种条件驱动的集成平衡表示学习与异常检测方法,以应对上述挑战,并首次将集成分析的概念引入到LIB异常检测领域。具体而言,本文为LIB单体设计了一种集成平衡表示学习策略,主要包括两个方面:首先,提出一种双层健康(DLH)特征学习方法,用于表征LIB单体的状态,该方法同时考虑了LIB单体自身的运行特性及其与其他单体之间的相互作用;其次,针对DLH特征设计了一种集成平衡分量分析(EBCA)方法,用以揭示LIB单体之间内在的平衡关系。该方法使我们能够在监控模块内LIB单体整体工作状态的同时,保持对个体LIB单体异常的敏感性。进一步地,考虑到非平稳特性的干扰影响,本文发展了一种条件驱动的模式划分策略,从LIB单体的非平稳运行过程中识别出多种工况模式,并为每种模式分别建立EBCA模型。所提方法的有效性通过一个BESS中LIB单体的实际运行过程数据得到了验证。
English Abstract
Abstract In the battery energy storage systems (BESS), multiple lithium-ion battery (LIB) cells are consolidated into a LIB module for scalable management. Normally, LIB cells within the same module are deemed to exhibit consistency acting as an ensemble. For the reliable monitoring of LIB cells, it is considerably challenging to capture the overall working status of LIB cells meanwhile maintaining the awareness of the consistency among each cell. Additionally, the nonstationary characteristics of LIB cells arising from charging, discharging, and other behaviors pose more difficulties for anomaly detection . In this study, we propose a condition-driven ensemble balance representation learning and anomaly detection method to address those challenges, introducing the concept of ensemble analysis for the first time in the field of LIB anomaly detection. Specifically, an ensemble balance representation learning strategy is developed for LIB cells, primarily consisting of two aspects. First, a dual-layer health (DLH) feature learning approach is proposed to provide a representation of the status of LIB cells, which considers LIB cell’s operation characteristics and the interaction with others. Second, an ensemble balance component analysis (EBCA) method is designed for DLH features to uncover the inherent balance relationship between LIB cells. This approach allows us to monitor the overall working status of LIB cells within the module while maintaining sensitivity to detecting individual LIB cell anomaly. Further, considering the influence of nonstationary characteristics, we develop a condition-driven mode partition strategy to uncover multiple condition modes from the nonstationary operation process of the LIB cells, where the EBCA model is established for each mode. The effectiveness of the proposed method is demonstrated through real operation processes of LIB cells in a BESS.
S
SunView 深度解读
该电池组一致性异常检测技术对阳光电源ST系列储能变流器及PowerTitan系统具有重要应用价值。论文提出的集成平衡表征学习方法可集成至BMS系统,通过双层健康特征学习实时监测电芯状态差异,结合条件驱动模式划分应对充放电非平稳特性。该技术可增强iSolarCloud平台预测性维护能力,提升储能系统安全性与一致性管理水平,降低电芯失效风险,延长BESS全生命周期,为大规模储能电站智能运维提供算法支撑。