← 返回
基于模型预测控制的梯级水电-光伏互补系统实时调度框架
A real-time scheduling framework of cascade hydropower-photovoltaic power complementary systems based on model predictive control
| 作者 | Chengguo Su · Li Li · Taiheng Zhang · Quan Sui · Yunbo Yang |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 392 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 模型预测控制MPC |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | A real-time scheduling framework for CH-PVP complementary systems is proposed. |
语言:
中文摘要
摘要 光伏(PV)发电与水电的联合运行已成为促进可再生能源消纳的有效途径。在实时调度过程中提升对水电和光伏发电的管理与控制能力,有助于满足电网预期的电力需求。然而,应对光伏发电出力和径流固有的不确定性仍是一项重大挑战。本文提出了一种基于模型预测控制(MPC)的梯级水电-光伏(CH-PVP)互补系统实时调度框架。采用Wasserstein生成对抗网络(WGAN)对径流和光伏发电出力进行预测,在此基础上构建了考虑动态水流滞时和水电机组振动区的CH-PVP互补系统实时调度模型,旨在最小化功率偏差并减少水电机组调整次数,从而确保水资源的高效利用和机组的安全运行,提高系统的可靠性。为保证计算效率并满足实时调度的时效性要求,采用线性化技术将模型转化为混合整数线性规划(MILP)模型,使求解时间控制在1分钟以内。案例研究表明:(1)WGAN模型具有较高的预测精度,能够有效捕捉光伏发电出力和径流过程的关键特征;(2)考虑动态水流滞时可显著提升系统稳定性,避免机组频繁调节。与不考虑水流滞时或将其简化为常数的情形相比,CH-PVP互补系统的功率偏差分别降低了59.2%和49.2%;(3)敏感性分析表明,径流和光伏发电出力的轻微增加有利于CH-PVP系统的协调运行,但在极端情况下,当径流和光伏发电出力波动超过30%时,系统性能将显著下降。
English Abstract
Abstract The integration of photovoltaic (PV) power and hydropower has become an effective approach for facilitating the consumption of renewable energy. Improving the management and control of hydropower and PV power during real-time scheduling can help with meeting the grid's anticipated electricity demand. However, hedging against the inherent uncertainties of PV power output and runoff is a significant challenge. This paper proposes a real-time scheduling framework for cascade hydropower-photovoltaic power (CH-PVP) complementary systems based on model predictive control (MPC). A Wasserstein generative adversarial network (WGAN) is used to forecast the runoff and PV power output. On this basis, a real-time scheduling model for CH-PVP complementary systems is established which considers dynamic water delay time and hydropower unit vibration zones, and aims to minimize power deviation and reduce hydropower unit adjustments. This ensures optimal utilization of water resources and the safe operation of units, thereby improving system reliability. To ensure computational efficiency and meet the timeliness requirements of real-time scheduling, linearization techniques are employed to transform the model into a MILP model, enabling solution times within 1 min. The case study shows that: (1) The WGAN model achieves high prediction accuracy, effectively capturing the signature features of the PV power output and runoff processes. (2) Considering the dynamic water delay time can significantly increase system stability and prevent frequent unit adjustments. Compared to conditions when the water delay time is not considered or is simplified to a constant, the power deviation in CH-PVP complementary systems is reduced by 59.2 % and 49.2 %, respectively. (3) Sensitivity analysis indicates that slight increases in runoff and PV power output are beneficial for the coordinated operation of the CH-PVP system. However, system performance deteriorates significantly under extreme conditions where runoff and PV power output fluctuations exceed 30 %.
S
SunView 深度解读
该MPC实时调度框架对阳光电源水光互补系统具有重要价值。WGAN预测模型可集成至iSolarCloud平台,提升光伏出力预测精度;动态水延时建模思路可应用于ST储能系统的充放电调度,优化SG逆变器与水电的协调控制策略。MILP快速求解技术(<1分钟)适配GFM/VSG控制的实时响应需求,降低功率偏差59.2%的效果验证了多能互补调度算法的工程价值,可为PowerTitan储能系统的AGC调频和削峰填谷功能提供算法支撑,增强新能源消纳能力。