← 返回
基于图元强化学习的高比例光伏接入智能配电网自主电压调节
Autonomous Voltage Regulation for Smart Distribution Network With High-Proportion PVs: A Graph Meta-Reinforcement Learning Approach
| 作者 | Leijiao Ge · Jingjing Li · Luyang Hou · Jingang Lai |
| 期刊 | IEEE Transactions on Sustainable Energy |
| 出版日期 | 2025年5月 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 储能系统 模型预测控制MPC 强化学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 分布式光伏 电压控制 深度强化学习 元学习 多智能体算法 |
语言:
中文摘要
高比例分布式光伏接入的智能配电网常面临严峻的电压质量问题。深度强化学习(DRL)无需显式建模即可实现优化控制,但在应用于此类系统时易受环境不稳定和智能体学习不均衡等问题影响。本文将电压控制建模为部分可观测马尔可夫决策过程,提出一种基于图卷积网络的多智能体元强化学习算法,融合元学习以提升智能体对他人行为的预测能力,缓解环境非稳性;通过引入自关注机制与值分解方法改善学习不均衡。在IEEE 33、141和322节点系统上的实验验证了所提方法的有效性,并优于五种主流多智能体DRL及模型预测控制方法。
English Abstract
Smart distribution grids with a high percentage of distributed photovoltaic (PV) systems often face severe voltage quality problems. Deep Reinforcement Learning (DRL) presents great potentials in achieving optimal voltage level control in distribution grids with the advantage of learning without explicit modeling. However, when DRL is applied to active voltage regulation in distribution grids with a high proportion of distributed photovoltaic (PV) power generation, it encounters several challenges, such as uneven learning among controllable devices and environmental instability, which impede the convergence of DRL. In addition, traditional reinforcement learning represents the distribution network with vectors and ignores topology information. In this paper, we transform the voltage control problem into a partially observable Markov decision process, and propose a multi-agent meta-reinforcement learning algorithm based on graph convolutional networks to improve voltage quality by combining DRL with meta-learning (ML). By integrating ML, our approach allows agents to better predict the actions of other agents, thus mitigating the instability of the environment. To address the problem of uneven learning among agents, we incorporate a self-concern mechanism and a value decomposition method into the critique network. The proposed algorithm is validated through experiments on IEEE 33-bus, 141-bus, and 322-bus systems and compared with five other multi-agent DRL methods and model-based model predictive control algorithms.
S
SunView 深度解读
该图元强化学习电压调节技术对阳光电源SG系列光伏逆变器和ST储能系统具有重要应用价值。可直接应用于分布式光伏并网场景的智能电压控制:1)通过多智能体协同优化,提升SG逆变器在高渗透率光伏配电网中的无功调节能力,解决传统MPC建模复杂、计算负荷高的问题;2)结合ST储能变流器的有功-无功协调控制,实现更快速的电压响应;3)元学习机制可适应光照波动等环境非平稳性,增强iSolarCloud平台的智能调度能力;4)图卷积网络天然适配配电网拓扑结构,可为阳光电源开发新一代分布式协同控制算法提供技术路径,提升智能配电网解决方案的市场竞争力。