← 返回
光伏发电技术 储能系统 深度学习 强化学习 ★ 5.0

基于深度强化学习的多模态对抗攻击下鲁棒光伏功率预测

Robust Photovoltaic Power Forecasting Against Multi-Modal Adversarial Attack via Deep Reinforcement Learning

作者 Jingxuan Liu · Haixiang Zang · Lilin Cheng · Tao Ding · Zhinong Wei · Guoqiang Sun
期刊 IEEE Transactions on Sustainable Energy
出版日期 2025年3月
技术分类 光伏发电技术
技术标签 储能系统 深度学习 强化学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 光伏功率预测 多模态攻击 鲁棒框架 深度确定性策略梯度 鲁棒性
语言:

中文摘要

随着深度学习与多模态外部数据在光伏功率预测中的广泛应用,网络攻击尤其是虚假数据注入可能严重误导预测结果,威胁电网安全经济运行。现有研究尚未充分关注多模态协同攻击的影响,且难以应对隐蔽性攻击。为此,本文提出一种新型鲁棒预测框架,通过构建充分利用多模态相关性的对抗攻击模拟潜在虚假数据注入,并采用深度确定性策略梯度算法动态调整各模态权重,以抑制数据污染并保留有效信息。 actor与环境模块预训练以提升收敛性与泛化能力。实验表明,在输入扰动低于5%时,所提方法均绝对误差仅增加0.053 kW,显著优于无鲁棒机制下的0.207 kW,验证了其在提升多模态光伏预测鲁棒性方面的有效性。

English Abstract

With the increasing applications of deep learning and external multi-modal data on photovoltaic (PV) power forecasting, cyberattacks, especially false data injections, can remarkably mislead forecasting methods, threatening the secure and economic management of power grids. Developing accurate and robust PV power forecasting methods is of great importance. Current studies have yet focused on the impact of multi-modal attacks and fell short of responding to unperceivable attacks. Therefore, we proposed a novel robust PV power forecasting framework. A multi-modal adversarial attack fully utilizing the multi-modal correlations was executed in the proposed framework to simulate a potential false data injection. To recover from attacks, we adopted deep deterministic policy gradient to dynamically distribute weights for each modal to mitigate the effects of data poisoning and utilize valuable information from multi-modal inputs. Within the framework, actor and environment were pretrained to facilitate convergence and generalization. As revealed by the comparisons against other state-of-the-art methods, with input perturbance under 5%, a mere 0.053 kW increase in mean absolute error was observed, which was remarkably less than that observed with no robustness methods as 0.207 kW. The experimental results indicated the effectiveness of the proposed framework on improving the robustness of multi-modal PV power forecasting.
S

SunView 深度解读

该多模态鲁棒预测技术对阳光电源iSolarCloud云平台和PowerTitan储能系统具有重要应用价值。针对光伏电站面临的网络安全威胁,可将深度强化学习的动态权重调整机制集成到智能运维平台中,增强气象数据、历史功率等多源信息融合的抗攻击能力。对于ST系列储能变流器的功率预测模块,该方法可有效抵御虚假数据注入,保障储能系统充放电策略的准确性。建议在SG系列逆变器的MPPT算法中引入对抗训练思想,提升辐照度传感器数据污染场景下的功率跟踪鲁棒性,确保电网侧功率预测精度,支撑构网型GFM控制的稳定运行。