找到 2 条结果
基于多智能体深度强化学习的氢储能系统参与式分散电压控制
Hydrogen Energy Storage System Participated Decentralized Voltage Control With Multi-Agent Deep Reinforcement Learning Method
Xian Zhang · Changlei Gu · Hong Wang · Guibin Wang 等6人 · IEEE Transactions on Industry Applications · 2025年1月
随着电力电子技术的发展,智能逆变器和储能系统正逐步应用于有源配电网(ADN)的电压调节。本文将氢能储能系统(HESS)纳入配电网电压控制,并提出一种协同电压控制框架。首先,考虑不同电压调节设备的特性,构建了一个双时间尺度电压控制问题。对HESS进行精确建模并引入快速时间尺度。为了实现该问题的分散高效求解,将其重新表述为双时间尺度马尔可夫博弈问题,然后提出一种改进的多智能体软演员 - 评论家(MASAC)算法来求解。具体而言,将优先经验回放引入MASAC算法,即PER - MASAC,以增强训练过...
解读: 该多智能体深度强化学习的分散电压控制技术对阳光电源ST系列储能变流器和PowerTitan大型储能系统具有重要应用价值。氢储能系统的无功调节策略可直接迁移至电化学储能PCS控制,增强ST储能变流器在配电网中的自主电压支撑能力。多智能体协同框架可应用于PowerTitan多机并联场景,实现分布式协同控...
基于图元强化学习的高比例光伏接入智能配电网自主电压调节
Autonomous Voltage Regulation for Smart Distribution Network With High-Proportion PVs: A Graph Meta-Reinforcement Learning Approach
Leijiao Ge · Jingjing Li · Luyang Hou · Jingang Lai · IEEE Transactions on Sustainable Energy · 2025年5月
高比例分布式光伏接入的智能配电网常面临严峻的电压质量问题。深度强化学习(DRL)无需显式建模即可实现优化控制,但在应用于此类系统时易受环境不稳定和智能体学习不均衡等问题影响。本文将电压控制建模为部分可观测马尔可夫决策过程,提出一种基于图卷积网络的多智能体元强化学习算法,融合元学习以提升智能体对他人行为的预测能力,缓解环境非稳性;通过引入自关注机制与值分解方法改善学习不均衡。在IEEE 33、141和322节点系统上的实验验证了所提方法的有效性,并优于五种主流多智能体DRL及模型预测控制方法。
解读: 该图元强化学习电压调节技术对阳光电源SG系列光伏逆变器和ST储能系统具有重要应用价值。可直接应用于分布式光伏并网场景的智能电压控制:1)通过多智能体协同优化,提升SG逆变器在高渗透率光伏配电网中的无功调节能力,解决传统MPC建模复杂、计算负荷高的问题;2)结合ST储能变流器的有功-无功协调控制,实现...