← 返回
储能系统技术 储能系统 强化学习 ★ 5.0

基于多智能体深度强化学习的氢储能系统参与式分散电压控制

Hydrogen Energy Storage System Participated Decentralized Voltage Control With Multi-Agent Deep Reinforcement Learning Method

作者 Xian Zhang · Changlei Gu · Hong Wang · Guibin Wang · Yinliang Xu · Ahmed Rabee Sayed
期刊 IEEE Transactions on Industry Applications
出版日期 2025年1月
技术分类 储能系统技术
技术标签 储能系统 强化学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 主动配电网 电压控制 氢能储能系统 多智能体算法 电压波动
语言:

中文摘要

随着电力电子技术的发展,智能逆变器和储能系统正逐步应用于有源配电网(ADN)的电压调节。本文将氢能储能系统(HESS)纳入配电网电压控制,并提出一种协同电压控制框架。首先,考虑不同电压调节设备的特性,构建了一个双时间尺度电压控制问题。对HESS进行精确建模并引入快速时间尺度。为了实现该问题的分散高效求解,将其重新表述为双时间尺度马尔可夫博弈问题,然后提出一种改进的多智能体软演员 - 评论家(MASAC)算法来求解。具体而言,将优先经验回放引入MASAC算法,即PER - MASAC,以增强训练过程的稳定性并提高控制性能。所提出的电压控制框架在改进的IEEE 33节点配电系统上进行了测试。仿真结果表明,该框架能够有效缓解电压波动、降低网络损耗并避免HESS出现运行违规情况。

English Abstract

With the development of power electronic technology, smart inverters and energy storage systems are progressively employed for voltage regulation in active distribution networks (ADNs). In this article, we incorporate hydrogen energy storage system (HESS) into distribution network voltage control and propose a cooperated voltage control framework. At first, we formulate a two-timescale voltage control problem considering the characteristics of different voltage regulation devices. HESS is accurately modeled and introduced into the fast timescale. To achieve a decentralized and efficient solution to this problem, we reformulate it as a two-timescale Markov games and then propose a modified multi-agent soft actor-critic (MASAC) algorithm to solve it. Specifically, the prioritized experience replay is introduced into MASAC algorithm, which is called PER-MASAC, to enhance the training process stability and improve the control performance. The proposed voltage control framework is tested with a modified IEEE 33-bus distribution system. The simulation results demonstrate that it can effectively mitigate the voltage fluctuation, reduce network loss and avoid the operational violation of HESS.
S

SunView 深度解读

该多智能体深度强化学习的分散电压控制技术对阳光电源ST系列储能变流器和PowerTitan大型储能系统具有重要应用价值。氢储能系统的无功调节策略可直接迁移至电化学储能PCS控制,增强ST储能变流器在配电网中的自主电压支撑能力。多智能体协同框架可应用于PowerTitan多机并联场景,实现分布式协同控制,减少对集中式通信的依赖,提升系统鲁棒性。该方法与阳光现有GFM构网型控制技术结合,可优化iSolarCloud平台的智能调度算法,实现储能系统从被动响应到主动参与电网电压调节的升级,特别适用于高比例新能源接入的主动配电网场景,提升阳光储能产品的电网友好性和市场竞争力。