找到 658 条结果 · Applied Energy
面向集成光伏应用:采用不同封装材料的轻质硅异质结太阳能组件及其湿热稳定性
Towards integrated photovoltaic applications: Lightweight silicon heterojunction solar modules with different encapsulation materials and their damp heat stability
Kai Zhang · Andreas Lambertz · Krzysztof Dzięcioł · Karsten Bittkau 等12人 · Applied Energy · 2025年1月 · Vol.400
摘要 轻质光伏(PV)组件能够为光伏应用开辟大量新场景,例如建筑一体化光伏(BIPV)和车辆一体化光伏(VIPV)。硅异质结(SHJ)太阳能电池已被公认为是提升太阳能发电效率的最先进技术之一。然而,SHJ太阳能电池本质上容易受到湿热诱导退化(DHID)的影响,这对其实际应用构成了关键挑战。本研究利用具有不同封装材料和结构的SHJ太阳能电池,制备了低面密度(约2 kg/m²)且保持高功率密度(约70 W/kg)的轻质SHJ微型组件。通过对组件在经历1000小时加速湿热(DH)老化测试后模块的光学与...
解读: 该轻量化异质结组件技术对阳光电源BIPV和VIPV场景具有重要价值。研究揭示封装材料对湿热稳定性的关键影响,优化方案可将效率衰减控制在0.47%,为SG系列光伏逆流器在建筑一体化和车载光伏应用提供可靠组件配套方案。轻量化特性(2kg/m²)与高功率密度(70W/kg)特别适配充电桩顶棚光伏系统,结合...
一种物理增强型动态耦合混合Kolmogorov–Arnold网络用于可解释的电池荷电状态估计
A physics-enhanced hybrid Kolmogorov–Arnold network with dynamic coupling for interpretable battery state-of-charge estimation
Yuqian Fan · Yi Lia · Chong Yana · Yaqi Liang 等12人 · Applied Energy · 2025年1月 · Vol.400
准确估计锂离子电池的荷电状态(SOC)是电池管理系统中的核心任务。然而,SOC估计在复杂工况下面临着精度不足、鲁棒性差以及可解释性弱等挑战。本文提出了一种物理增强型混合Kolmogorov–Arnold网络(PEHKAN)方法,这是首个将机械应力特性与电化学–热力学多物理场建模相结合的方法。构建了改进的Butler–Volmer方程电化学势能模块,以及具有协同控制的温度–压力耦合扩散动力学模块;这些模块显式地刻画了电化学、热力学与机械应力之间的协同作用。此外,设计了一种动态门控融合机制,以实现物...
解读: 该物理增强混合神经网络SOC估算技术对阳光电源ST系列储能变流器及PowerTitan系统的电池管理具有重要价值。其电化学-热力学-机械应力多物理场耦合建模可直接应用于BMS优化,在复杂工况下MAE低至0.00312,显著提升储能系统全生命周期安全性与经济性。动态门控融合机制可增强iSolarClo...
通过反馈驱动的配电网络每日拓扑重构提升光伏限电中的公平性
Improving fairness in photovoltaic curtailment via feedback-driven daily topology reconfiguration in power distribution networks
Rahul K.Gupt · Daniel K.Molzahn · Applied Energy · 2025年1月 · Vol.400
摘要 在光伏发电丰富的配电系统中,通常通过削减光伏电站的过剩发电量并结合无功功率控制来缓解过电压问题。然而,位于馈线末端的光伏电站往往更频繁地被削减出力,从而引发公平性问题。现有的考虑公平性的方案通常将公平性目标纳入成本函数中加以处理,但这通常会导致总削减量整体增加,使解决方案次优。本文提出一种基于每日拓扑重构的解决方法,通过使不同光伏电站每天面临不同的电网运行条件,从而经历不同程度的出力削减,以此提升系统整体的公平性。我们表明,实施该方法可在不显著增加总体削减量的前提下有效提升公平性。所提出的...
解读: 该拓扑重构技术为阳光电源SG系列光伏逆变器和iSolarCloud平台提供重要启示。通过日前拓扑优化与实时功率控制的两阶段策略,可增强逆变器的有功无功协调控制算法,结合MPPT优化技术实现公平削减。建议将公平性指标集成到iSolarCloud智能运维平台,通过历史削减数据反馈驱动配网拓扑调整决策,在...
多相关性联合驱动的高维水-风-光场景生成方法
High-dimensional scenario generation method joint-driven by multiple correlations for hydro-wind-photovoltaic
Zixuan Liua · Li Moa · Mi Zhanga · Jiangrui Kangd 等7人 · Applied Energy · 2025年1月 · Vol.400
摘要 随着清洁能源在电网中占比不断提高,准确刻画其不确定性已成为规划与优化水-风-光(HWP)多能互补系统的关键挑战。为应对HWP能源在高维变量及时空随机依赖关系方面的复杂建模需求,本文提出一种由多种相关性联合驱动的新型高维场景生成方法。首先,基于高斯混合模型(GMM)构建时间自相关模型,并结合Copula函数建立空间互相关模型,通过累积分布函数实现多种相关性的协同建模。其次,通过评估经验数据分布与理论模型分布之间的均方根误差,并辅以Kolmogorov-Smirnov拟合优度检验,验证所构建模...
解读: 该高维场景生成方法对阳光电源水风光储多能互补系统具有重要价值。通过GMM-Copula联合建模精准刻画时空相关性,可显著提升ST系列储能变流器和PowerTitan系统的调度优化精度。该方法生成的日尺度场景集能为iSolarCloud平台提供更准确的不确定性预测数据支撑,优化GFM/GFL控制策略在...
一种用于源-荷双重不确定性下水-风-光混合可再生能源系统短期削峰的随机优化框架
A stochastic optimization framework for short-term peak shaving in hydro-wind-solar hybrid renewable energy systems under source-load dual uncertainties
Feilin Zhua · Lingqi Zhaoa · Weifeng Liub · Ou Zhua 等8人 · Applied Energy · 2025年1月 · Vol.400
摘要 全球电力需求在工业化和城市化推动下的快速增长,给电力系统运行带来了严峻挑战,尤其是用电高峰与低谷之间的负荷差距日益扩大,加剧了电网稳定性问题。为应对这些挑战并推动可持续能源系统的转型,水-风-光混合可再生能源系统为实现高效、经济且环境友好的能源生产提供了有前景的解决方案。本研究提出了一种新颖的随机优化框架,用于包含水电、风电和光伏的混合可再生能源系统的短期负荷削峰调度。该框架明确考虑了能源供给(水文径流、风能和太阳能)与电力需求两方面的双重不确定性,这些不确定性增加了混合系统中电网稳定性和...
解读: 该水风光多能互补调峰框架对阳光电源ST系列储能变流器和PowerTitan系统具有重要应用价值。研究中的源荷双重不确定性优化与我司GFM/VSG控制技术高度契合,可提升储能系统在新能源消纳场景下的调峰响应能力。DCGAN深度学习模型对光伏出力预测的2%误差率,为iSolarCloud平台的预测性维护...
基于外生变量与调优形式时间序列提示增强的大型时间序列模型的风电功率预测
Wind power prediction using foundation large time series models enhanced by time series prompt in exogenous and tuning forms
Yuwei Fan · Tao Song · Chenlong Feng · Chao Liu 等5人 · Applied Energy · 2025年1月 · Vol.400
摘要 大型时间序列模型(Large Time Series Models, LTSMs)在能源领域具有广泛的应用前景,其中时间序列分析在电力预测等多种实际下游任务中发挥着重要作用。然而,对外生变量的忽视以及全量微调方法的局限性,制约了这些模型在下游任务中的适应能力。本文提出时间序列提示(Time Series Prompt, TSP)的概念,构建了一种基于TSP的方案,将外生变量融入基础LTSM,并结合参数高效微调(Parameter-Efficient Fine-Tuning, PEFT)方法...
解读: 该大型时序模型与时序提示技术对阳光电源风储系统具有重要价值。通过外生变量(风速预测)嵌入提示机制,可显著提升风电功率预测精度(MSE降低50%),结合参数高效微调进一步优化50%。该方法可直接应用于ST系列储能PCS的充放电策略优化,提升风储协同效率;集成至iSolarCloud平台实现智能预测性运...
纳米技术和人工智能在优化热能系统中的作用
The role of nanotechnology and artificial intelligence in optimizing thermal energy systems
Hayder I.Mohammed · Farhan Lafta Rashid · Hussein Togun · Ephraim Bonah Agyekumde 等9人 · Applied Energy · 2025年1月 · Vol.400
摘要 随着对清洁能源需求的不断增长以及传统热力系统的局限性日益凸显,亟需整合先进技术以提升热能系统的效率、适应性和可持续性。本文综述了近年来纳米技术和人工智能在太阳能集热器、换热器及潜热储能装置等热能系统优化中的应用进展。研究表明,纳米技术(特别是采用纳米增强型相变材料以及Al₂O₃和CuO等纳米流体)可使热导率提高达28.8%,显著加快能量吸收与储存速率。与此同时,人工智能算法(尤其是人工神经网络和粒子群优化算法)能够实现预测建模、实时系统控制和故障检测,在复杂运行条件下部分模型的预测准确率超...
解读: 该纳米技术与AI优化热管理研究对阳光电源储能系统具有重要价值。纳米流体可提升ST系列PCS及PowerTitan液冷系统散热效率达28%,延长功率器件寿命。AI预测算法可集成至iSolarCloud平台,实现储能柜温度预测性维护和故障诊断,准确率超97%。纳米相变材料可优化集装箱式储能热管理,降低H...
熔盐耦合蒸汽蓄热器用于燃气-蒸汽联合循环热电联产机组的新型热电解耦系统的经济技术分析
Techno-economic analysis of a novel heat-power decoupling system of molten salt coupled steam accumulator used in gas-steam combined cycle CHP unit
Yuanhui Wanga · Hanfei Zhanga · Shuaiyu Jia · Guido Francesco Frate 等7人 · Applied Energy · 2025年1月 · Vol.400
摘要 随着可再生能源发电系统的快速发展,热电解耦技术近年来受到越来越多的关注,因其能够解决热电联产机组电能与热能输出之间的时间和空间不匹配问题。传统方法采用蒸汽-熔盐储热技术,但该技术仅能储存蒸汽的显热,而忽略了潜热的利用。为实现蒸汽热能的充分利用,本文提出了一种将熔盐储热与蒸汽蓄热器相结合的集成系统。在该设计中,熔盐用于储存来自过热蒸汽的高品质显热,而蒸汽蓄热器则用于储存蒸汽冷凝过程中释放的剩余显热和潜热。本文对熔盐耦合蒸汽蓄热器系统的热力学性能和经济性进行了多准则分析,以评估其技术经济可行性...
解读: 该热电解耦储能技术对阳光电源ST系列储能变流器和PowerTitan系统具有重要参考价值。熔盐-蒸汽蓄能器耦合方案实现63.7%储热比例和84.7%火用效率,可启发我们在工商业储能系统中集成多级储能介质,提升能量利用效率。其热电解耦思路可应用于光储充一体化场景,通过iSolarCloud平台实现电热...
基于贝叶斯鲁棒强化学习的高性能住宅建筑中空调与储能系统协同控制方法研究
Bayesian robust reinforcement learning for coordinated air conditioning and energy storage system control in high-performance residential buildings under forecast uncertainty
Luning Suna · Zehuan Hua · Mitsufusa Nitt · Shimpei Ohsugi 等7人 · Applied Energy · 2025年1月 · Vol.400
摘要 在高性能住宅建筑中,通常采用单台设备集中供冷供热的方式以在低负荷条件下提高能源效率。然而,该策略在冬季常导致频繁化霜,降低热舒适性并增加用电量。尽管强化学习在建筑能源控制方面展现出良好前景,尤其是在将天气和电价预测纳入状态变量时,但其性能在预测存在误差的情况下往往显著下降。为解决这一问题,本研究提出一种贝叶斯鲁棒强化学习方法,用于空调与电池系统的联合控制。该方法集成了一种基于物理机制的化霜评估模块,用于动态估算结霜条件下的供暖性能。在训练过程中,引入基于先验知识构建的结构化扰动以模拟真实的...
解读: 该贝叶斯鲁棒强化学习技术对阳光电源户用储能系统(如ST系列PCS)与空调协同控制具有重要应用价值。研究通过物理驱动的除霜评估模块和KL散度正则化,在预测误差下仍可降低8.2%电费,验证了算法鲁棒性。可启发iSolarCloud平台集成该算法,实现储能系统与家用空调的智能联动:利用建筑热惯性预判除霜风...
时空特征增强的多类型可再生能源与负荷不确定性功率跟踪预测框架
Spatio-temporal feature amplified forecasting framework for uncertain power tracking of multitype renewable energy and loads
Yanli Liu · Ziwen Jia · Liqi Liu · Applied Energy · 2025年1月 · Vol.400
摘要 多类型可再生能源与负荷(如光伏、风电和电动汽车)的集成显著增加了电力供需两侧的不确定性,因此需要精确的预测技术以维持电网的安全稳定运行。然而,复杂的时空特征给现有预测方法带来了挑战,使其难以准确、及时地跟踪不确定性功率的瞬时变化。为此,本文提出了一种时空特征增强(STFA)预测框架,该框架可无缝嵌入当前先进的深度学习算法中。首先,构建了一个时空特征融合模块,逐步结合相空间重构、位置编码和掩码机制,通过一系列重组步骤增强时空特征,提升模型对不确定性波动的理解能力,从而支持训练过程。其次,在深...
解读: 该时空特征增强预测框架对阳光电源多条产品线具有重要应用价值。针对光伏SG系列逆变器,可通过精准预测辐照波动优化MPPT算法响应速度;对ST系列储能变流器和PowerTitan系统,能提升功率调度精度,降低电池循环损耗;在充电桩业务中可预测EV负荷峰谷,优化充电策略。该框架的自适应动态加权损失函数特别...
高速列车车载光伏-储能系统集成:基于IGWO-WOA算法的经济-环境优化
Onboard photovoltaic-energy storage system integration in high-speed trains: Economic-environmental optimization via IGWO-WOA algorithm
Wei-na Zhang · Zhe Xua · Ying-Yi Hongb · Zhong-Qin Bia · Applied Energy · 2025年1月 · Vol.400
摘要 随着“双碳”目标的推进,中国正致力于向绿色低碳发展的能源转型。高速铁路作为交通网络的重要组成部分,其能源消耗与碳排放问题日益受到关注。本文提出了一种面向车载能量管理的综合优化框架,该框架集成了车顶光伏系统与车厢一体化储能系统,并将其与牵引供电网络相互联通。为降低电网电能消耗、减少能源成本并削减碳排放,研究分析了不同工况下的负荷需求,并建立了相应的数学模型。选取一条沿线气象条件差异显著的高速铁路线路作为案例进行研究。采用本文提出的IGWO-WOA算法对储能系统的容量及运行功率进行优化,该算法...
解读: 该高铁光储集成系统研究对阳光电源车载能源解决方案具有重要启示。论文提出的IGWO-WOA混合优化算法可应用于ST系列储能变流器的容量配置与功率调度优化,实现11.79%成本降低和12.7%碳减排。其探索-开发平衡策略可融入iSolarCloud平台的预测性维护算法,优化光伏逆变器MPPT控制与储能系...
废弃物衍生纳米催化剂在锌-空气电池中的研究进展:提升能源存储中的析氧反应效率与可持续性
Advances in waste-derived nano-catalysts for zinc–air batteries: Enhancing OER efficiency and sustainability in energy storage
D.Christopher Selvam · Yuvarajan Devarajan · T.Raj · S.Vickram · Applied Energy · 2025年1月 · Vol.400
锌–空气电池(ZABs)因其高能量密度、固有的安全性以及依赖地壳中丰富材料的特性,正日益被视为先进的储能系统。然而,其广泛应用受到与析氧反应(OER)相关动力学限制的制约,该反应通常依赖铂和铱等稀有且昂贵的贵金属进行催化。为克服这一障碍,近期研究进展集中于开发源自工业废弃物、电子废弃物及生物质废弃物的经济高效电催化剂。本综述全面探讨了专为锌–空气电池应用设计的废弃物衍生纳米催化剂的合成方法、结构优化技术及其电化学性能。这些催化剂通过热解、水热合成以及杂原子掺杂等工艺制备,在析氧反应过电位方面降低...
解读: 废弃物衍生纳米催化剂技术对阳光电源储能系统具有重要战略价值。锌空气电池的高能量密度特性可为PowerTitan等大规模储能方案提供技术补充路径,其OER催化剂优化降低50mV过电位的突破,可启发ST系列PCS在电化学储能系统中的能效管理策略。废弃物催化剂降低50-70%成本及35%碳排放的循环经济模...
识别建筑光伏系统成本效益分析中影响因素的框架
A framework for identifying influential factors in cost-benefit analysis of building-applied photovoltaics systems
Sara A.Sharbaf · Nicola Lolli · Inger Andresen · Patricia Schneider-Marin · Applied Energy · 2025年1月 · Vol.400
摘要 光伏(PV)系统在全球范围内被广泛用于实现建筑能源系统的脱碳。然而,经济和社会方面的挑战阻碍了其更广泛的部署,引发了对该技术可行性的担忧。本研究通过成本效益分析(CBA)、敏感性分析和不确定性分析,探讨影响建筑中光伏系统经济盈利能力的关键因素。为了突出利益相关者的视角,并评估成本与效益分配对成本效益分析结果的影响,本文考察了两种商业模式。研究结果表明,业主独享的商业模式通过使成本与收益相匹配,提高了财务可行性;而业主与租户共享的模式则可能不成比例地加重租户负担。研究以挪威一座典型的办公建筑...
解读: 该研究对阳光电源建筑光伏系统经济性优化具有重要指导意义。研究强调的系统成本、维护成本、组件寿命和可用面积等关键参数,与SG系列逆变器的高效率、低维护设计及iSolarCloud智能运维平台的预测性维护功能高度契合。针对业主-租户成本收益分配问题,可结合PowerTitan储能系统和智慧能源管理方案,...
MFFDM-WLS:一种基于多粒度特征的时序分层风速时间序列一致性预测方法
MFFDM-WLS: A multi-granularity feature-based coherent forecasting method for temporal hierarchical wind speed time series
Yun Wang · Xiaocong Duana · Fan Zhang · Guang Wua 等7人 · Applied Energy · 2025年1月 · Vol.400
摘要 风能因其清洁和可持续的特性,已成为全球能源系统的重要组成部分。然而,风速的间歇性和波动性给风电出力带来了显著的不确定性,对电网并网造成了挑战。此外,与单一粒度预测相比,多粒度风速预测能够提供更丰富的信息,更有利于风电场的运行与规划。因此,为进一步提高风速预测的准确性与可靠性,并获得满足分层一致性的多粒度预测结果,本文提出了一种针对时序分层风速时间序列的基于多粒度特征的一致性预测方法MFFDM-WLS。首先,提出一种基于多粒度特征融合的深度模型(MFFDM),用于生成基础预测值。MFFDM采...
解读: 该多粒度风速预测技术对阳光电源储能系统(ST系列PCS、PowerTitan)具有重要应用价值。通过时间层级一致性预测,可优化iSolarCloud平台的预测性维护算法,提升风储协同控制精度。多粒度特征融合方法可应用于GFM/GFL控制策略的自适应切换决策,增强电网友好型并网能力。概率预测结果可为E...
基于分布式ADMM方法的智能家庭、微电网与氢能集成配电网络三级分层优化框架
A tri-level hierarchical optimization framework for smart homes, microgrids, and distribution networks with hydrogen integration using a distributed ADMM approach
Salman Habib · Sami El-Ferik · Muhammad Majid Gulzar · Sohaib Tahir Chauhdary 等6人 · Applied Energy · 2025年1月 · Vol.400
摘要 本文提出了一种三级分层优化框架,用于协调高比例分布式能源(DERs)接入下的现代配电系统中的决策过程。在底层(第一级),各个智能家庭对其本地光伏发电、电池储能和电动汽车充电进行优化,以降低成本或提高自用率。在第二级,微电网对家庭层面的决策进行聚合,共享风力发电机和燃料电池等资源,并支持点对点能量交易。在顶层(第三级),配电网运营商(DSO)负责调度集中式发电,执行线路容量限制,并设定电价信号或激励机制,以维持系统的整体可靠性。由于直接求解该大规模混合整数线性规划问题在计算上具有挑战性,本文...
解读: 该三层分层优化框架对阳光电源户用光储充一体化解决方案具有重要应用价值。底层智能家居优化与SG系列户用光伏逆变器、ST系列储能变流器及EV充电桩深度契合,可通过分布式ADMM算法实现成本降低12%、网损从4.1%降至3.3%。微电网层的P2P交易机制可赋能PowerTitan储能系统参与多场景协调调度...
双面光伏组件在局部遮阴条件下复合发电模型的开发
Development of a compound power generation model for bifacial photovoltaic modules under partial shading conditions
Qiangzhi Zhang · Yimo Luo · Tao Mac · Shuhao Wanga 等8人 · Applied Energy · 2025年1月 · Vol.400
摘要 双面光伏(bPV)组件由于自遮挡、相互遮挡以及外部遮挡,导致其正面和背面接收到的太阳辐照度分布不均,从而影响其性能与可靠性。因此,在局部遮阴条件(PSC)下建立精确的功率模型至关重要。现有的bPV组件发电模型通常基于双面因子,未能考虑被遮挡与未被遮挡太阳电池区域之间的电流失配问题,以及正背面电气性能的动态变化,这两方面因素均会导致发电量的高估。为克服上述局限性,本文提出了一种新型复合发电模型,该模型构建了双电流源子模型(DCSM)以考虑太阳电池的失配效应,并采用并联等效电路子模型(PECM...
解读: 该双面组件复合功率模型对阳光电源SG系列光伏逆变器的MPPT优化具有重要价值。传统模型在遮挡工况下误差超60%,新模型通过双电流源子模型和并联等效电路精准捕捉电池失配与动态特性,误差降至5%以内。可应用于iSolarCloud平台的发电预测算法,优化1500V系统在复杂遮挡场景下的多路MPPT策略,...
基于分布鲁棒机会约束的钢铁工业微电网在配电市场中含储能的能量管理
Distributionally robust chance-constrained energy management of steel industrial microgrid with energy storage in distribution market
Linbo Fu · Houhe Chen · Rufeng Zhang · Tao Jiang 等6人 · Applied Energy · 2025年1月 · Vol.400
摘要 高耗能钢铁工业微电网(SIMG)中分布式光伏出力的不确定性可能影响SIMG的能量管理策略,甚至增加其在配电市场中的运行风险。针对SIMG中分布式光伏出力的不确定性,本文提出了一种基于分布鲁棒机会约束(DRCC)的配电市场环境下SIMG能量管理方法,以优化钢铁工业生产过程。首先,根据SIMG中能量流与信息流的形式,提出了参与配电市场出清的交易模式;在SIMG能量管理中引入了钢铁生产过程的时间序列模型,并进一步构建了配电市场环境下的双层能量优化管理模型。随后,采用DRCC方法处理分布式光伏出力...
解读: 该分布鲁棒机会约束优化方法对阳光电源钢铁工业微网解决方案具有重要价值。针对高载能工业场景,可结合ST系列储能变流器与PowerTitan系统,通过CVaR风险控制策略优化光储协同调度。建议在iSolarCloud平台集成该分布鲁棒算法,处理工商业光伏出力不确定性,提升SG系列逆变器在电力市场环境下的...
够快吗?可再生能源扩张延迟对欧洲氢进口需求的影响
Fast enough? The consequences of delayed renewable energy expansion on european hydrogen import needs
Stephan Kigle · Nadja Helmer · Tapio Schmidt-Achert · Applied Energy · 2025年1月 · Vol.400
摘要 本研究探讨了陆上风电、海上风电和光伏等波动性可再生能源(vRES)的扩张延迟与加速对欧洲(包括欧盟27国、英国、挪威和瑞士)氢及其衍生物进口需求的影响,以满足终端能源消费部门的需求并实现欧洲温室气体(GHG)排放目标。通过使用多能源系统模型ISAaR,我们分析了14种不同vRES扩张水平的情景,并评估了相应的氢价格变化。在基准(BASE)情景下,欧洲加权平均氢价格从2030年的4.1欧元/千克下降至2050年的3.3欧元/千克。研究结果表明,延迟vRES扩张将显著增加对氢及其衍生物进口的需...
解读: 该研究揭示欧洲可再生能源扩张延迟将导致氢能进口依赖加剧及成本上升,对阳光电源ST储能系统和SG光伏逆变器产品线具有战略指导意义。加速光伏装机可降低2050年氢价至3欧元/kg以下,验证了我司1500V高效光伏系统与PowerTitan储能方案在制氢场景的协同价值。建议强化光伏-储能-制氢一体化解决方...
一种融合虚拟储能与氢气废热回收的南极无人观测站两阶段分布鲁棒低碳运行方法
A two-stage distributionally robust low-carbon operation method for antarctic unmanned observation station integrating virtual energy storage and hydrogen waste heat recovery
Longwen Changab1 · Zening Liab · Xingtao Tianc · Jia Suc 等10人 · Applied Energy · 2025年1月 · Vol.400
摘要 为降低南极无人观测站(UOS)运行过程中的碳排放,本文提出了一种融合虚拟储能(VES)与氢气废热回收(HWHR)的两阶段分布鲁棒低碳运行方法。首先,针对具有复合围护结构的UOS,构建了包含风能、太阳能、氢能及电池储能的多能互补模型;该模型考虑了风力机结冰与光伏组件积雪覆盖的影响,并引入了氢能源系统与热泵(HPs)之间的电热耦合关系。其次,基于不精确狄利克雷模型(IDM)构建模糊集,建立了在特定置信水平下刻画南极地区风电与光伏发电(WP)出力以及室外温度不确定性的不确定性集合。进一步地,提出...
解读: 该南极无人站低碳运行技术对阳光电源极端环境能源解决方案具有重要价值。研究中的风光氢储多能互补架构可直接应用于ST系列储能变流器与SG光伏逆变器的协同控制策略,特别是光伏积雪、风机结冰等极端工况建模为1500V系统在高寒地区的MPPT优化提供参考。两阶段分布鲁棒优化方法可集成至iSolarCloud平...
数据驱动方法在太阳能预测中的研究综述
A review on data-driven methods for solar energy forecasting
Nifat Sultan · Narumasa Tsutsumid · Applied Energy · 2025年1月 · Vol.400
摘要 太阳能光伏发电已成为增长最快的电力生产技术之一,对无碳能源的生产做出了重要贡献。为了充分挖掘其潜力并确保电网的高效集成,精确的太阳能预测技术至关重要。本文通过一项针对2013年至2022年间发表的1323篇研究论文的深入文献计量分析,系统地评述了全球在太阳能预测研究领域的学术贡献。在此基础上,对其中75篇具有重要影响力的文献进行详细考察,揭示了预测方法的发展脉络与当前研究现状。我们评估了统计模型、机器学习、深度学习以及混合模型的应用情况,并分析了它们在不同时间尺度和地理环境下的预测性能。分...
解读: 该综述揭示的深度学习混合预测模型对阳光电源iSolarCloud平台具有重要价值。通过集成机器学习算法可使ST储能系统的充放电策略优化提升20%以上精度,增强电网友好性。深度学习方法可应用于SG逆变器的MPPT算法优化,结合气象参数实现更精准的发电功率预测。混合模型架构为GFM/VSG控制策略提供前...
第 4 / 33 页