← 返回
一种用于源-荷双重不确定性下水-风-光混合可再生能源系统短期削峰的随机优化框架
A stochastic optimization framework for short-term peak shaving in hydro-wind-solar hybrid renewable energy systems under source-load dual uncertainties
| 作者 | Feilin Zhua · Lingqi Zhaoa · Weifeng Liub · Ou Zhua · Tiantian Houa · Jinshu Lic · Xuning Guob · Ping-an Zhong |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 400 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 工商业光伏 调峰调频 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Integrated framework optimizes short-term peak shaving in hydro-wind-solar systems. |
语言:
中文摘要
摘要 全球电力需求在工业化和城市化推动下的快速增长,给电力系统运行带来了严峻挑战,尤其是用电高峰与低谷之间的负荷差距日益扩大,加剧了电网稳定性问题。为应对这些挑战并推动可持续能源系统的转型,水-风-光混合可再生能源系统为实现高效、经济且环境友好的能源生产提供了有前景的解决方案。本研究提出了一种新颖的随机优化框架,用于包含水电、风电和光伏的混合可再生能源系统的短期负荷削峰调度。该框架明确考虑了能源供给(水文径流、风能和太阳能)与电力需求两方面的双重不确定性,这些不确定性增加了混合系统中电网稳定性和实时调度决策的复杂性。该框架集成了深度学习模型:具体而言,采用深度卷积生成对抗网络(DCGAN)模拟风能和太阳能发电的不确定性,并采用鞅模型处理水文径流和负荷需求的不确定性。在此基础上,基于随机规划理论构建了一个用于削峰的随机优化模型,旨在最小化残余负荷的峰谷差值,同时综合考虑供需两侧的不确定性因素。模型求解采用粒子群优化算法,并引入基于概率距离的场景削减算法,以平衡场景规模与计算效率。在中国黄河上游某水-风-光混合系统上开展的数值实验验证了该框架的有效性。结果表明,DCGAN模型能够有效捕捉风能和太阳能的概率分布特征,在不预设特定随机变量分布的前提下,对所有样本均表现出强大的泛化能力,误差率低于2%。水-风-光多能系统的联合运行显著降低了负荷的峰谷差异,相较于单一能源优化或仅调度水电的方案,整体运行效益得到明显提升。关键的是,所采用的场景削减算法在显著降低计算负担的同时,有效保持了解的质量。此外,牺牲0.2%的水电发电量作为代价,换取更加稳定可控的负荷过程,被证明是一种合理且经济的权衡策略。综上所述,这些发现凸显了该框架在优化能源生产与电网稳定性方面的潜力。因此,本研究所获得的洞见有助于推进更加强健和响应灵敏的电力系统管理策略的发展,从而支持向可持续、韧性能源基础设施的转型。
English Abstract
Abstract The rapid growth of global electricity demand, driven by industrialization and urbanization, poses significant challenges to power system operators, particularly the increasing disparity between peak and off-peak loads, which exacerbates grid stability issues. To mitigate these challenges and transition towards sustainable energy systems, hydro-wind-solar hybrid systems offer a promising solution for efficient, cost-effective, and environmentally energy production. This study introduces a novel stochastic optimization framework for short-term peak shaving in a hybrid renewable energy system comprising hydro, wind, and solar power sources. The framework explicitly accounts for dual uncertainties, namely those associated with energy supply (hydrological runoff, wind, and solar power) and electricity demand, which complicate grid stability and real-time dispatch decisions in hybrid systems. The framework integrates deep learning models, specifically deep convolutional generative adversarial networks (DCGAN) for simulating wind and solar power generation uncertainties, and the martingale model for hydrological runoff and load demand uncertainties. A stochastic optimization model for peak shaving is developed within the framework of stochastic programming. This model is designed to minimize the peak-valley variation of the residual load, factoring in uncertainties from both the energy supply and demand perspectives. The particle swarm optimization algorithm is employed for model solving, and a scenario reduction algorithm based on probability distance is adopted to balance scenario scale and computational efficiency. Numerical experiments on a hydro-wind-solar hybrid system in the upper reaches of the Yellow River in China demonstrate the effectiveness of the framework. The results show that the DCGAN model effectively encapsulates the probabilistic distributions of wind and solar energy, demonstrating robust generalization with an error rate below 2 % for all samples without assuming specific random variable distributions. The integrated operation of hydro-wind-solar energy systems significantly reduces peak-to-valley load differences and yields notable improvements in overall operational benefits compared to individual energy source optimization or stand-alone hydropower scheduling. Crucially, the scenario reduction algorithm preserves solution quality while substantially reducing computational burden. Furthermore, the marginal compromise of a 0.2 % reduction in hydropower generation is justified as a rational and economical trade-off for achieving a stable and controllable load process. Collectively, these findings underscore the framework's potential to optimize both energy generation and grid stability. Consequently, the insights gained contribute to advancing the development of more robust and responsive power system management strategies, thereby supporting the transition towards sustainable and resilient energy infrastructures.
S
SunView 深度解读
该水风光多能互补调峰框架对阳光电源ST系列储能变流器和PowerTitan系统具有重要应用价值。研究中的源荷双重不确定性优化与我司GFM/VSG控制技术高度契合,可提升储能系统在新能源消纳场景下的调峰响应能力。DCGAN深度学习模型对光伏出力预测的2%误差率,为iSolarCloud平台的预测性维护算法提供了优化方向。粒子群优化算法可集成至EMS能量管理系统,实现工商业光伏储能一体化项目的削峰填谷经济性最大化,支撑公司在水风光储多能互补领域的系统解决方案拓展。