← 返回
光伏发电技术 储能系统 工商业光伏 ★ 5.0

采用河马优化器对不同技术商用光伏电池/组件的精确建模

Precise modelling of commercial photovoltaic cells/modules of different technologies using hippopotamus optimizer

语言:

中文摘要

准确识别光伏模型的参数对于集成式和独立式光伏系统的精确仿真与分析至关重要,直接影响性能评估结果。因此,本研究探讨了河马优化器在光伏单二极管模型、双二极管模型以及Sandia光伏阵列性能模型最优参数识别中的应用方法。单二极管和双二极管模型用于模拟稳态电流-电压(I-V)和功率-电压(P-V)特性曲线,而Sandia模型则用于预测不同环境条件下的最大功率点。优化目标设定为最小化均方根误差,并满足运行和设计上的可行性约束条件。河马优化器在八种不同技术类型的商用光伏单元上进行了测试,涵盖硅基、多晶硅、单晶硅、碲化镉、铜铟镓硒以及非晶硅/微晶硅电池。通过大量仿真并与文献中其他优化算法进行比较,河马优化器展现出卓越性能,实现了最低的均方根误差值,表明其建模数据点与实际数据集之间具有高度相关性。例如,在采用单二极管模型时,该优化器针对Kyocera KC200GT、PhotoWatt PWP201、STP6-120/36和STM6-40/36组件以及RTC France光伏硅电池所获得的最佳均方根误差值分别为28.210671 mA、2.039979 mA、13.79826 mA、1.721864 mA和0.7728666 mA。这些结果突显了河马优化器作为提升光伏模型精度的强大工具的潜力,从而有助于提高光伏系统在实际应用中的性能预测能力和设计精确度。

English Abstract

Abstract Accurate parameters’ identifications of photovoltaic models is essential for precise simulation and analysis of integrated and standalone photovoltaic systems which is directly influencing performance assessments. Accordingly, this study investigates the procedures of the hippopotamus optimizer for optimal parameters’ identifications of photovoltaic single and double-diode models, as well as the Sandia photovoltaic array performance model. The single and double-diode models simulate the steady-state I-V and P-V principal curves, while the Sandia model predicts maximum power points under various environmental conditions. Reducing root mean quadratic error is adapted as the optimization objective, subjected to operational and design viable constraints. The hippopotamus optimizer’s performance is tested on eight commercial photovoltaic units with diverse technologies, including silicon, poly-crystalline, mono-crystalline, cadmium telluride, copper indium gallium selenide, and amorphous silicon/microcrystalline silicon cells. Thru extensive simulations and comparisons with other optimizers in the literature, the hippopotamus optimizer shows its effectiveness in achieving lowest values of the root mean quadratic errors, indicating a high correlation among modeled and actual dataset points. For instance, using the single-diode model, the optimizer achieves best root mean quadratic error values of 28.210671 mA, 2.039979 mA, 13.79826 mA, 1.721864 mA, and 0.7728666 mA for Kyocera KC200GT, PhotoWatt PWP201, STP6-120/36, and STM6-40/36 modules and RTC France photovoltaic silicon cell, respectively. These results highlight the optimizer’s potential as a powerful tool for enhancing photovoltaic model accuracy. Consequently, the hippopotamus optimizer contributes to improved performance predictions and design precision in photovoltaic applications.
S

SunView 深度解读

该河马优化算法用于光伏模型参数辨识技术对阳光电源SG系列逆变器的MPPT控制优化具有重要价值。通过精确建模单/双二极管模型和Sandia性能模型,可显著提升不同环境条件下的最大功率点预测精度,RMSE误差降至mA级别。该技术可集成至iSolarCloud平台,增强多晶硅、单晶硅、薄膜等不同技术组件的建模准确性,优化ST系列储能变流器的功率预测算法,提升工商业光伏系统的发电效率评估与预测性维护能力,为逆变器控制策略和能量管理系统提供更精准的模型基础。