← 返回
DFDR-NLNet:一种用于光伏面板分割的双频率差异化表示非局部网络
DFDR-NLNet: A dual-frequency differentiated representation non-local network for photovoltaic panel segmentation
| 作者 | Yitong Fua · Haiyan Lia · Pengfei Yua · Yaqun Huang · Wen Zengb |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 401 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 储能系统 工商业光伏 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | A data augmentation approach utilizing DDPM is proposed to generate joint data distributions enhancing model robustness. |
语言:
中文摘要
摘要 光伏(PV)技术在全球扩展可再生能源方面发挥着关键作用,然而在城市、农村和工业环境中,实现精确的光伏面板分割以优化资源配置并指导安装政策仍是一项挑战。为应对数据多样性的限制,本文提出一种基于去噪扩散概率模型(DDPM)的数据增强方法,用于生成联合数据分布,从而提升模型的鲁棒性。在此基础上,我们提出了一种双频率差异化表示非局部网络(DFDR-NLNet),用于实现更真实的光伏面板分割。为了提高Transformer分支中全局上下文特征提取的效率,我们提出了一种低频表示Transformer,该方法通过频率分解增强大尺度语义建模,并利用原始相位信息保留关键的位置线索。此外,设计了跨尺度对齐模块(CSAM),以促进不同特征层级之间的语义对齐与协同学习。为了增强边缘信息在分割过程中的贡献,我们构建了边缘特征感知模块(EFAM),专注于高频信息的提取。最后,通过多向交叉注意力机制(MDCA)建模边缘特征与解码器表征之间的对应关系,以促进在模糊区域中的分割效果。DFDR-NLNet在PVP-Dataset、BDAPPV和PV01数据集上分别取得了83.39%、66.14%和91.48%的mIoU,优于其他现有方法,在光伏面板定位与边缘细化方面表现突出。此外,该方法被应用于评估塞内加尔Kael太阳能电站的发电能力,计算得该电站阵列面积为0.25 km²,系统装机容量为38.13 MW,年发电量达63.71 GWh。
English Abstract
Abstract Photovoltaic (PV) technology plays a crucial role in expanding renewable energy globally, yet achieving precise PV panel segmentation to optimize resource allocation and guide installation policy remains a challenge across urban, rural, and industrial environments. To address data diversity limitations, we propose a data augmentation method using a denoising diffusion probabilistic model (DDPM) to generate joint data distributions, enhancing model robustness. Building on this, we introduce a dual-frequency differentiated representation non-local network (DFDR-NLNet) for realistic PV panel segmentation. To enhance the efficiency of global contextual feature extraction in the Transformer branch, we propose a low-frequency representation Transformer that strengthens large-scale semantic modeling through frequency decomposition and preserves crucial positional cues using original phase information. Additionally, a cross-scale alignment module (CSAM) is proposed to facilitate semantic alignment and collaborative learning across different feature levels. To enhance the contribution of edge information in the segmentation process, we design an edge feature awareness module (EFAM) that focuses on high-frequency information. Finally, the correspondence between edge features and decoder representations is modeled to facilitate segmentation in ambiguous regions, via a multi-directional cross attention (MDCA). DFDR-NLNET achieves mIoUs of 83.39 %, 66.14 %, and 91.48 % on PVP-Dataset, BDAPPV, and PV01, outperforming other methods in PV panel localization and edge refinement. Furthermore, the method is used to evaluate the power generation capacity of the Kael Solar Power Plant in Senegal, where the array area is calculated to be 0.25 km 2 , the system size is 38.13 MW, and the annual output power is 63.71 GWh.
S
SunView 深度解读
该光伏板精准分割技术对阳光电源iSolarCloud智慧运维平台具有重要应用价值。DFDR-NLNet的高精度边缘识别(mIoU达91.48%)可增强SG系列逆变器阵列的智能巡检能力,通过频域特征提取优化MPPT算法的组件级监控。其电站容量评估功能可为工商业光伏项目提供精准选址与ST储能系统配置依据,结合PowerTitan实现发电-储能协同优化。扩散模型数据增强方法可提升预测性维护算法在复杂场景下的鲁棒性,推动光储一体化解决方案的智能化升级。