← 返回
光伏发电技术 储能系统 工商业光伏 ★ 5.0

一种集成的工业光伏面板清洁推荐系统以实现最优除尘

An integrated industrial PV panel cleaning recommendation system for optimal dust removal

作者 Chao Zhang · Yunfeng Ma · Guolin Yang · Tao Chen
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 377 卷
技术分类 光伏发电技术
技术标签 储能系统 工商业光伏
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Innovative PV Panel Cleaning Framework for Addressing Extreme Weather Conditions.
语言:

中文摘要

摘要 基于前期研究,本文对光伏枢纽清洁推荐系统(PNCRS)的有效性进行了全面研究。PNCRS是一种智能清洁推荐系统,旨在针对不同环境条件下优化光伏(PV)面板的清洁调度。传统的固定时间间隔和基于性能退化的光伏面板维护策略往往难以奏效,主要原因是其无法适应不断变化的环境影响,特别是在极端天气条件下。这些传统方法虽然简单直接,却未能捕捉到环境变化与面板效率之间的复杂相互作用,导致清洁计划次优以及能量输出下降。该智能清洁推荐系统通过实时环境适应性、数据驱动的决策机制以及综合利润优化,在确定光伏面板清洁调度方面显著优于传统方法。本文中,智能清洁推荐系统PNCRS融合了前沿的数据增强与机器学习技术,包括变分模态分解(VMD)和条件生成对抗网络(CGANs)。这种集成为提升数据表征能力至关重要,尤其适用于输入数据稀疏或不具代表性的情况,例如在异常天气模式下。此外,系统采用小波包能量传递函数(WPETF),创新性地减少了模型在极端条件下对影响较小的环境特征的依赖。进一步地,系统利用基于利润的贝叶斯优化(BO)方法,在利润曲线偏离预期时动态调整模型特征的重要性权重。本文通过对两个具有独特运行特征的光伏电站应用PNCRS进行评估,定量验证了该系统的有效性:利润曲线显示,电站1的利润提升了29%,电站2的利润提升了34%。

English Abstract

Abstract Developed from prior research, this paper presents a comprehensive study on the effectiveness of the PV Nexus Cleaning Recommendation System (PNCRS), an intelligent cleaning recommendation system designed for optimizing photovoltaic (PV) panel cleaning schedules under various environmental conditions. Traditional fixed interval and performance degradation strategies for PV panel maintenance often prove inadequate, primarily due to their inability to adapt to fluctuating environmental impacts, particularly under extreme weather conditions. These conventional methods, while straightforward, fail to capture the complex interplay between environmental variability and panel efficiency, leading to suboptimal cleaning schedules and diminished energy output. The intelligent cleaning recommendation system utilizes real-time environmental adaptability, data-driven decision making , and comprehensive profit optimization to significantly determine PV panel cleaning schedule over traditional methods. In this paper, the intelligent cleaning recommendation system PNCRS incorporates cutting-edge data augmentation and machine learning techniques , including Variational Mode Decomposition (VMD) and Conditional Generative Adversarial Networks (CGANs). This integration is essential for enhancing data representation, particularly in scenarios where input data is sparse or unrepresentative, such as during unusual weather patterns. Additionally, the system employs the Wavelet Packet Energy Transmissibility Function (WPETF) to innovatively reduce the model’s dependency on less impactful environmental features under extreme conditions. Furthermore, the system uses profit-based Bayesian Optimization (BO) to dynamically adjust the importance weights of model features when profit curves deviate from expectations. Our evaluation of the PNCRS across two PV farms with unique operational features quantitatively validates its effectiveness, as profit curves indicate a 29% profit increase at Farm 1 and a 34% profit increase at Farm 2.
S

SunView 深度解读

该智能清洁推荐系统对阳光电源iSolarCloud平台具有重要应用价值。系统采用的VMD-CGAN数据增强和WPETF特征优化技术,可与SG系列逆变器的MPPT优化算法协同,通过实时环境数据动态调整清洁策略,在工商业光伏场景下提升29-34%收益。其贝叶斯优化的利润曲线模型可集成至预测性运维系统,为PowerTitan储能系统的能量管理提供清洁度预测输入,优化充放电策略,降低因灰尘遮挡导致的发电损失,提升全生命周期经济性。