← 返回
风电变流技术
★ 5.0
基于外生变量与调优形式时间序列提示增强的大型时间序列模型的风电功率预测
Wind power prediction using foundation large time series models enhanced by time series prompt in exogenous and tuning forms
| 作者 | Yuwei Fan · Tao Song · Chenlong Feng · Chao Liu · Dongxiang Jiang |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 400 卷 |
| 技术分类 | 风电变流技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Time series prompts for downstream adaptation of foundation large time series models. |
语言:
中文摘要
摘要 大型时间序列模型(Large Time Series Models, LTSMs)在能源领域具有广泛的应用前景,其中时间序列分析在电力预测等多种实际下游任务中发挥着重要作用。然而,对外生变量的忽视以及全量微调方法的局限性,制约了这些模型在下游任务中的适应能力。本文提出时间序列提示(Time Series Prompt, TSP)的概念,构建了一种基于TSP的方案,将外生变量融入基础LTSM,并结合参数高效微调(Parameter-Efficient Fine-Tuning, PEFT)方法,从而实现更灵活且高效的任务适配。首先,本文提出一种TSP构造方法,将外生变量作为提示嵌入,以引导模型生成过程,而无需修改模型主干结构。其次,引入一种基于提示的PEFT方法,称为提示调优(prompt tuning, PT)。通过在输入中增补针对下游任务优化的人工提示,PT仅需训练约10%的模型参数,同时保持模型主干冻结。所提出的方案显著提升了基础LTSM在适应下游任务时的灵活性。本文以Timer作为基础LTSM的示例,采用准确或含噪声的未来风速作为外生变量,在风电功率预测任务中通过消融实验验证了所提方法的有效性。结果表明,通过提示引入外生变量可使预测均方误差(MSE)降低约50%,进一步进行提示调优(PT)可在此基础上再额外降低最多50%的MSE。实验结果验证了TSP在基础LTSM中的有效性,为大型时间序列模型在风电功率预测中的高效、灵活适配提供了参考。
English Abstract
Abstract Large Time Series Models (LTSMs) hold broad application prospects in the field of energy, where time series analysis plays an important role in various practical downstream tasks such as power forecasting. However, the neglect of exogenous variables and limitations of full fine-tuning have hindered their adaptation to downstream tasks. Proposing the concept of Time Series Prompt (TSP), this work develops a TSP-based scheme to integrate exogenous variables into foundation LTSMs together with Parameter-Efficient Fine-Tuning (PEFT) method, enabling more flexible and effective adaptation. Firstly, this work proposes a TSP construction method that embeds exogenous variables as prompts to guide model generation without altering the model’s backbone. Secondly, a prompt-based PEFT method is introduced, known as prompt tuning (PT). By augmenting the input with artificial prompts optimized for downstream tasks, PT allows for the training of approximately only 10 % of the model’s parameters while the model’s backbone remains frozen. The presented scheme significantly enhances the flexibility of foundation LTSMs in adapting to downstream tasks. The proposed methods are validated in wind power prediction by ablation study, using Timer as an example of foundation LTSMs and adopting accurate or noisy future wind speed as exogenous variables. The results demonstrate that introducing exogenous variables via prompts can reduce the prediction MSE by approximately 50 %, and subsequent PT can further reduce the MSE by up to an additional 50 %. The results confirm the effectiveness of the TSP in foundation LTSMs, providing a reference for efficient and flexible adaptation of foundation LTSMs to wind power prediction.
S
SunView 深度解读
该大型时序模型与时序提示技术对阳光电源风储系统具有重要价值。通过外生变量(风速预测)嵌入提示机制,可显著提升风电功率预测精度(MSE降低50%),结合参数高效微调进一步优化50%。该方法可直接应用于ST系列储能PCS的充放电策略优化,提升风储协同效率;集成至iSolarCloud平台实现智能预测性运维;为GFM控制策略提供更精准的功率预测输入,增强电网支撑能力。轻量化微调特性(仅训练10%参数)适合边缘侧部署,降低算力成本,推动阳光电源新能源预测与调度智能化升级。