← 返回
数据驱动方法在太阳能预测中的研究综述
A review on data-driven methods for solar energy forecasting
| 作者 | Nifat Sultan · Narumasa Tsutsumid |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 400 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Presents a comprehensive review of analytical methods for solar energy forecasting. |
语言:
中文摘要
摘要 太阳能光伏发电已成为增长最快的电力生产技术之一,对无碳能源的生产做出了重要贡献。为了充分挖掘其潜力并确保电网的高效集成,精确的太阳能预测技术至关重要。本文通过一项针对2013年至2022年间发表的1323篇研究论文的深入文献计量分析,系统地评述了全球在太阳能预测研究领域的学术贡献。在此基础上,对其中75篇具有重要影响力的文献进行详细考察,揭示了预测方法的发展脉络与当前研究现状。我们评估了统计模型、机器学习、深度学习以及混合模型的应用情况,并分析了它们在不同时间尺度和地理环境下的预测性能。分析结果表明,自2018年至2022年以来,研究趋势显著从传统的统计模型转向机器学习和深度学习方法。在大多数被综述的案例中,相较于单一模型方法,混合模型的使用持续将预测误差降低20%以上。本文还探讨了模型复杂度、数据来源、预测精度、气象参数的影响以及数据处理技术等相关因素。研究结果强调,全球正逐步向基于深度学习的混合模型过渡,这类模型展现出更优的可扩展性和预测准确性。这些模型正日益广泛应用于多种时空尺度的预测场景中,为建立标准化的方法体系奠定了基础,同时有助于缓解太阳能预测研究与应用中存在的区域差异问题。
English Abstract
Abstract Solar photovoltaic energy has emerged as one of the fastest-growing electricity-generation technologies, making substantial contributions to carbon-free energy production. To fully harness its potential and ensure efficient grid integration, accurate solar energy forecasting techniques are essential. This review systematically analyzes global contributions to solar energy forecasting research through an in-depth bibliometric study of 1323 research articles published between 2013 and 2022. A detailed examination of 75 influential articles from this collection provides insights into the evolution and current state of forecasting approaches. We assess the use of statistical, machine-learning, deep-learning, and hybrid models and evaluate their performance across various temporal horizons and geographical contexts. Our analysis reveals a notable shift from statistical models toward machine-learning and deep-learning approaches, particularly from 2018 to 2022. Hybridization of models consistently reduces forecasting error by over 20 % compared to single-model approaches in most reviewed cases. We also explore aspects such as model complexity, data sources, forecasting accuracy, influence of meteorological parameters, and data-processing techniques. Our findings underscore a global transition toward deep-learning-based hybrid models that demonstrate superior scalability and accuracy. These models are increasingly adopted across various spatial and temporal forecasting scenarios, paving the way for standardized methodologies and helping address regional disparities in solar energy forecasting research and implementation.
S
SunView 深度解读
该综述揭示的深度学习混合预测模型对阳光电源iSolarCloud平台具有重要价值。通过集成机器学习算法可使ST储能系统的充放电策略优化提升20%以上精度,增强电网友好性。深度学习方法可应用于SG逆变器的MPPT算法优化,结合气象参数实现更精准的发电功率预测。混合模型架构为GFM/VSG控制策略提供前瞻性数据支撑,提升新能源并网稳定性。建议将标准化预测方法论整合至PowerTitan系统的智能调度模块,实现储能与光伏协同优化。