← 返回
纳米技术和人工智能在优化热能系统中的作用
The role of nanotechnology and artificial intelligence in optimizing thermal energy systems
| 作者 | Hayder I.Mohammed · Farhan Lafta Rashid · Hussein Togun · Ephraim Bonah Agyekumde · Arman Ameen · Karrar A.Hammoodi · Rujda Parveen · Saif Ali Kadhim · Walaa N.Abbasb |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 400 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Integrates nanotechnology and AI to optimize thermal energy system performance. |
语言:
中文摘要
摘要 随着对清洁能源需求的不断增长以及传统热力系统的局限性日益凸显,亟需整合先进技术以提升热能系统的效率、适应性和可持续性。本文综述了近年来纳米技术和人工智能在太阳能集热器、换热器及潜热储能装置等热能系统优化中的应用进展。研究表明,纳米技术(特别是采用纳米增强型相变材料以及Al₂O₃和CuO等纳米流体)可使热导率提高达28.8%,显著加快能量吸收与储存速率。与此同时,人工智能算法(尤其是人工神经网络和粒子群优化算法)能够实现预测建模、实时系统控制和故障检测,在复杂运行条件下部分模型的预测准确率超过97%。本文强调了将这两类技术结合所具有的协同潜力,有望构建智能化、自调节的热能系统。然而,研究也指出了若干关键挑战,包括计算开销大、纳米颗粒合成成本高、人工智能应用中缺乏可重复性,以及在极端工况下验证不足等问题。文中还讨论了若干商业化应用案例(如基于人工智能驱动的相变材料供暖、通风与空调系统在智能建筑中的应用),展示了其实际可行性,报告节能率最高可达28%,投资回收期低于三年。最后,论文提出了未来集成研究方向,即结合多尺度材料创新与基于动态数据集的稳健人工智能训练方法。这一双重策略对于开发可扩展、低成本且具备韧性的热能系统至关重要,将有力支撑全球能源转型进程。
English Abstract
Abstract The growing demand for clean energy and the limitations of conventional thermal systems necessitates the integration of advanced technologies to enhance efficiency, adaptability, and sustainability. This review critically examines recent advancements in the application of nanotechnology and artificial intelligence for optimizing thermal energy systems, including solar collectors, heat exchangers, and latent heat storage units. Nanotechnology (particularly the use of nano-enhanced phase change materials and nanofluids such as Al₂O₃ and CuO) has shown to improve thermal conductivity by up to 28.8 %, accelerating energy absorption and storage rates. Concurrently, artificial intelligence algorithms, especially artificial neural networks and particle swarm optimization, enable predictive modelling, real-time system control, and fault detection, with some models achieving prediction accuracies above 97 % under complex operational conditions. The review emphasizes the synergistic potential of combining these technologies to create intelligent, self-regulating thermal energy systems. However, the paper also identifies critical challenges including computational overhead, cost of nanoparticle synthesis, lack of reproducibility in artificial intelligence implementations, and insufficient validation under extreme scenarios. Commercial deployment case studies (such as artificial intelligence-driven phase change material-based heating, ventilation, and air conditioning systems in smart buildings) are discussed to illustrate practical viability, reporting energy savings of up to 28 % with return-on-investment periods under three years. The paper concludes by proposing integrated research directions that combine multiscale material innovation with robust artificial intelligence training on dynamic datasets. This dual approach is essential to developing scalable, cost-effective, and resilient thermal energy systems capable of supporting global energy transitions.
S
SunView 深度解读
该纳米技术与AI优化热管理研究对阳光电源储能系统具有重要价值。纳米流体可提升ST系列PCS及PowerTitan液冷系统散热效率达28%,延长功率器件寿命。AI预测算法可集成至iSolarCloud平台,实现储能柜温度预测性维护和故障诊断,准确率超97%。纳米相变材料可优化集装箱式储能热管理,降低HVAC能耗28%。建议将粒子群优化算法应用于SiC/GaN器件热设计,并开展纳米增强冷却液在大功率PCS的工程验证,提升系统能量密度与可靠性。