← 返回
多相关性联合驱动的高维水-风-光场景生成方法
High-dimensional scenario generation method joint-driven by multiple correlations for hydro-wind-photovoltaic
| 作者 | Zixuan Liua · Li Moa · Mi Zhanga · Jiangrui Kangd · Wan Liua · Xutong Suna · Wenjing Xiaoa |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 400 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | This study proposed an effective scenario generation method that synergistically integrates GMM and Copula functions. |
语言:
中文摘要
摘要 随着清洁能源在电网中占比不断提高,准确刻画其不确定性已成为规划与优化水-风-光(HWP)多能互补系统的关键挑战。为应对HWP能源在高维变量及时空随机依赖关系方面的复杂建模需求,本文提出一种由多种相关性联合驱动的新型高维场景生成方法。首先,基于高斯混合模型(GMM)构建时间自相关模型,并结合Copula函数建立空间互相关模型,通过累积分布函数实现多种相关性的协同建模。其次,通过评估经验数据分布与理论模型分布之间的均方根误差,并辅以Kolmogorov-Smirnov拟合优度检验,验证所构建模型的准确性与可靠性。然后,在建立的多相关性建模框架基础上,结合逆变换采样方法,生成了径流、风电出力和光伏(PV)出力的日尺度场景集。最后,从多个角度采用多种指标对所提方法的性能进行了全面评估。本研究的创新性体现在:(1)提出的GMM-Copula协同建模机制可实现HWP资源间多种相关性特征的解耦建模,且时变参数能够反映相关性的动态演化过程;(2)采用条件分布策略降低了建模复杂度,提升了计算可行性,有效解决了高维时间变量与高维资源变量的建模难题。将该方法应用于溪洛渡水电站及其关联的风-光资源,结果表明其在保持统计特性、描述多重相关性以及刻画不确定性方面具有优越性能,显著提高了场景生成的准确性与实用性。该进展为优化HWP多能互补系统的调度提供了坚实的数据支撑。
English Abstract
Abstract With the high proportion of clean energy connected to the grid, accurately characterizing its uncertainty emerges as a pivotal challenge for the planning and optimizing Hydro-Wind-Photovoltaic (HWP) multi-energy complementary systems. To address the complex modeling requirements of HWP resources in terms of high-dimensional variables and spatiotemporal stochastic dependencies, this study proposes a novel high-dimensional scenario generation method, jointly driven by multiple correlations. Firstly, the temporal autocorrelation models based on Gaussian mixture model (GMM) were constructed alongside the spatial cross-correlation model utilizing Copula functions, with synergistic modeling of multiple correlations being achieved through cumulative distribution functions. Second, the accuracy and reliability of the constructed models were validated through evaluation of root mean square errors between empirical data distributions and theoretical model distributions, supplemented by Kolmogorov-Smirnov goodness-of-fit tests. Then, based on established multiple correlations modeling framework and integrated with inverse transform sampling, daily-scale scenario sets were generated for streamflow, wind power output, and photovoltaic (PV) output. Finally, the performance of the proposed method was comprehensively evaluated through multiple metrics from diverse perspectives. The novelty of this work lies in: (1) The synergistic GMM-Copula modeling mechanism enables decoupled modeling of multiple correlations characteristics among HWP resources, with time-varying parameters reflecting dynamic evolution of correlations; (2) The application of the conditional distribution strategy reduced modeling complexity and improved computational feasibility, effectively addressing the challenges of modeling high-dimensional temporal variables and high-dimensional resource variables. Applied to the Xiluodu Hydropower Station and its associated wind-PV resources, the proposed method demonstrates superior performance in preserving statistical properties, describing multiple correlations, and characterizing uncertainties, thereby enhancing the accuracy and practicality of scenario generation. This advancement provides robust data support for optimizing the dispatch of HWP multi-energy complementary systems.
S
SunView 深度解读
该高维场景生成方法对阳光电源水风光储多能互补系统具有重要价值。通过GMM-Copula联合建模精准刻画时空相关性,可显著提升ST系列储能变流器和PowerTitan系统的调度优化精度。该方法生成的日尺度场景集能为iSolarCloud平台提供更准确的不确定性预测数据支撑,优化GFM/GFL控制策略在高比例新能源并网场景下的参数自适应。建议将该建模框架集成到智慧运维系统,结合SG系列逆变器MPPT优化算法,提升水光风储协同调度的经济性与可靠性,为大规模清洁能源基地提供数据驱动的智能决策方案。