找到 12 条结果 · IEEE Access
微电网的统一物理信息神经网络框架及其在电压稳定性分析中的应用
Uniform Physics Informed Neural Network Framework for Microgrid and Its Application in Voltage Stability Analysis
Renhai Feng · Khan Wajid · Muhammad Faheem · Jiang Wang 等6人 · IEEE Access · 2025年1月
本文聚焦物理信息神经网络PINN在光伏PV、风电和储能设备模型参数提取中的应用。准确提取这些模型参数对有效控制和优化重庆电力系统CPS整体稳定性至关重要。尽管提出众多算法解决该问题,准确可靠提取参数仍是重大挑战。本文提出改进PINN命名为统一物理信息神经网络UPINN,采用基于近端策略优化PPO的强化学习进行参数提取。UPINN通过四种策略克服PINN困难:反馈算子、GRU门控机制、历史种群传递算子和PPO辅助强化学习修正因子。UPINN模型迭代训练以最大化参数和减少RMSE。UPINN准确提取...
解读: 该物理信息神经网络技术对阳光电源设备建模和电网分析有重要应用价值。阳光iSolarCloud平台管理海量光伏储能设备,需要准确的设备模型进行仿真和优化。UPINN参数提取方法可应用于阳光设备数字孪生模型的自动标定。强化学习PPO算法对阳光智能控制策略优化有借鉴意义。电压稳定性监测是阳光储能系统电网支...
基于无模型深度强化学习的微电网能量管理
Energy Management in Microgrids Using Model-Free Deep Reinforcement Learning Approach
Odia A. Talab · Isa Avci · IEEE Access · 2025年1月
随着智能电网技术的发展,微电网在整合风能、太阳能等可再生能源方面发挥着关键作用。然而,可再生能源的间歇性及电动汽车与快充站负荷的增长,给微电网运行的稳定性与效率带来挑战。本文提出一种无模型的实时能量管理策略,无需传统不确定性建模即可应对源荷双重不确定性。将问题建模为马尔可夫决策过程,并采用基于Actor-Critic架构的深度确定性策略梯度算法实现动态优化。仿真结果表明,该方法总成本降至51.8770 €ct/kWh,较Dueling DQN和DQN分别降低3.19%和4%,验证了其在现代微电网...
解读: 该无模型深度强化学习能量管理技术对阳光电源微电网解决方案具有重要应用价值。可直接应用于PowerTitan储能系统与ST系列储能变流器的能量调度优化,通过DDPG算法实现光伏-储能-充电桩的实时协同控制,无需复杂的不确定性建模即可应对源荷波动。该方法可集成至iSolarCloud云平台,提升微电网E...
微电网控制与管理的强化学习解决方案综述
Reinforcement Learning Solutions for Microgrid Control and Management: A Survey
Pedro I. N. Barbalho · Anderson L. Moraes · Vinicius A. Lacerda · Pedro H. A. Barra 等6人 · IEEE Access · 2025年1月
微电网MG是包含负荷和分布式能源资源的配电系统部分,能够并网或离网运行。具有适当设计的MG控制器提升能源效率,在现代配电系统中发挥重要作用。因此,MG管理和控制因其复杂运行成为广泛研究领域。强化学习RL为处理MG复杂动态和非线性提供自适应解决方案,是传统算法和控制方法在负荷频率控制、资源分配和能源管理等任务中的替代方案。鉴于该主题相关性,本综述检验RL在MG控制和管理中的作用,在先前综述基础上提供全面更新,按RL类型、控制目标和MG运行模式对文章分类。此外,评估基于RL解决方案的硬件实施和性能评...
解读: 该强化学习综述对阳光电源微电网智能控制具有重要指导价值。阳光PowerStack微电网系统需要自适应控制算法应对负荷波动和能源不确定性。该研究系统梳理的RL方法可应用于阳光微电网EMS系统,优化负荷频率控制和能源调度。在工商业微电网场景下,RL可实现储能系统的智能充放电决策,提升经济效益。该综述识别...
数字孪生与TD3算法实现车联网中电动汽车能量管理优化
Digital Twin and TD3-Enabled Optimization of xEV Energy Management in Vehicle-to-Grid Networks
Irum Saba · Abdulraheem H. Alobaidi · Sultan Alghamdi · Muhammad Tariq · IEEE Access · 2025年1月
电动汽车快速普及需优化储能系统管理以提升性能、寿命和可靠性。传统ESS管理方法在实时状态估计、能量优化和预测性维护方面存在困难,导致电池利用和可持续性效率低下。本文提出先进ESS框架,集成数字孪生DT技术和双延迟深度确定性策略梯度TD3算法(源自DDPG的最先进强化学习方法)。该集成实现关键ESS状态(SOC、SOH、SOE和RUL)的精确实时估计,增强预测性维护和运营效率。所提框架促进主动电池健康监控,生成潜在故障早期预警,通过DT驱动ESS控制实现智能电池更换。通过动态调整ESS控制策略,T...
解读: 该数字孪生技术对阳光电源新能源汽车业务具有重要价值。阳光OBC车载充电机和BMS系统需要精准的电池状态估计和智能能量管理。该研究的DT-TD3框架可集成到阳光车辆能量管理系统,实现99.8%的高精度SOC/SOH估计,优化充电策略和电池寿命管理。在V2G车网互动场景下,该技术可预测电池健康状态,智能...
新型SEPIC衍生半桥式PFC变换器用于电池充电应用
New SEPIC Derived Semi-Bridgeless PFC Converter for Battery Charging Application
Sampson E. Nwachukwu · Komla A. Folly · Kehinde O. Awodele · IEEE Access · 2025年1月
本文提出交直流半桥双开关SEPIC变换器,专为电池充电设计。通过改进结构显著降低交流输入电流总谐波畸变率,提升功率因数。变换器工作在断续导通模式以实现低电流THD,同时大幅减小电感尺寸。采用两个功率开关实现功率因数校正,主要创新在于通过电感电容能量平衡原理设计电路结构,确保低THD和单位功率因数。阻断二极管消除输入电感环流,提升效率。100W/53V原型测试显示电流THD为2.1%、单位功率因数、额定工况效率92.4%。
解读: 该PFC变换器技术与阳光电源OBC车载充电机设计理念一致。阳光OBC产品追求高功率因数、低THD和高效率,该半桥SEPIC拓扑无需额外PFC控制算法即可实现2.1% THD,优于传统方案。该技术可应用于阳光下一代OBC产品,减小电感体积,提升功率密度,在800V高压快充平台上实现更紧凑的设计和更高的...
多目标集成电路物理布局优化的分层深度强化学习及拥塞感知奖励塑造
Hierarchical Deep Reinforcement Learning for Multi-Objective Integrated Circuit Physical Layout Optimization With Congestion-Aware Reward Shaping
Haijian Zhang · Yao Ge · Xiuyuan Zhao · Jiyuan Wang · IEEE Access · 2025年1月
随着半导体技术向先进节点演进,集成电路物理布局优化面临关键挑战,传统EDA工具难以同时优化布线拥塞、功耗和时序等多个冲突目标。本文提出一种新型分层深度强化学习框架,采用拥塞感知奖励塑造机制动态平衡探索与利用。
解读: 该深度强化学习优化技术可直接应用于阳光电源SiC功率模块的芯片布局设计。通过多目标优化框架同时优化功率密度、热分布和可靠性,为ST系列储能变流器的新一代高功率密度芯片设计提供AI辅助工具。...
基于AI驱动的低能耗物联网协议优化用于可扩展高效智慧医疗系统
AI-Driven Optimization of Low-Energy IoT Protocols for Scalable and Efficient Smart Healthcare Systems
Salma Rattal · Abdelmajid Badri · Mohamed Moughit · El Miloud Ar-Reyouchi 等5人 · IEEE Access · 2025年1月
物联网IoT承诺超连接世界,集成数十亿设备。低能耗通信协议对延长资源受限IoT设备电池寿命和确保高效数据交换至关重要。本文提出新型AI驱动优化框架,增强智慧医疗应用中协议的能效、可扩展性和适应性。与以往孤立优化协议的工作不同,本研究全面分析BLE、Zigbee、Thread、LoRa、Sigfox、NB-IoT、Wi-SUN和Weightless等协议,突出优缺点。该框架利用机器学习ML、强化学习RL和深度学习DL等先进AI技术优化传输距离、数据速率和功耗等关键指标。定量评估显示性能和权衡的显著...
解读: 该物联网协议优化技术对阳光电源分布式设备通信系统有应用价值。阳光户用光伏和储能系统中大量传感器和控制器需要低功耗长距离通信。AI优化的LoRa和NB-IoT协议可提升阳光监控设备的通信效率和电池寿命。强化学习自适应协议参数的方法可应用于阳光iSolarCloud平台的设备连接优化。该研究关注的功耗、...
模糊驱动医疗设备的电能质量评估与优化
Power Quality Assessment and Optimization in FUZZY-Driven Healthcare Devices
Dinesh Kumar Nishad · Saifullah Khalid · Rashmi Singh · IEEE Access · 2025年1月
模糊技术出现彻底改变医疗保健,赋能更智能医疗设备和设备。然而,这些模糊驱动系统的成功运行取决于高电能质量。本文引入创新模糊驱动能源管理系统,结合卷积神经网络CNN用于实时电能质量事件检测、长短期记忆LSTM网络用于预测分析以及强化学习用于优化控制。通过IEEE 13总线测试馈线广泛仿真,证明系统在检测和缓解电能质量扰动方面的卓越性能。基于CNN的检测在事件分类中达到97%准确率,而LSTM实现95%准确预测新兴问题。强化学习控制器相比传统方法,实现电压凹陷恢复快50%、谐波降低提升20%、停电期...
解读: 该电能质量管理技术对阳光电源储能系统在医疗等关键负荷场景具有重要参考。阳光PowerTitan工商业储能系统服务医院、数据中心等对电能质量要求极高的场所。该研究的CNN-LSTM-强化学习混合框架可集成到阳光储能变流器的智能控制系统,实现电能质量事件实时检测和快速响应。在医疗场景下,电压凹陷和谐波可...
基于竞争深度Q网络的移动边缘计算部分卸载与资源分配深度强化学习
Deep Reinforcement Learning With Dueling DQN for Partial Computation Offloading
Ehzaz Mustafa · Junaid Shuja · Faisal Rehman · Abdallah Namoun 等6人 · IEEE Access · 2025年1月
计算卸载将IoT设备资源密集型任务转移到强大边缘服务器,最小化延迟并降低计算负载。深度强化学习广泛用于优化卸载决策,但现有研究存在两大不足:未全面优化状态空间,且Q学习和DQN在大动作空间中难以辨别最优动作。本文提出多分支竞争深度Q网络MBDDQN,解决高维状态-动作空间和动态环境长期成本优化挑战。竞争DQN缓解同步卸载和资源分配决策复杂性,每个分支独立控制决策变量子集,随IoT设备增加高效扩展,避免组合爆炸。实施LSTM网络和独特优势-价值层增强短期动作选择和长期成本估计,提升模型时序学习能力...
解读: 该多分支强化学习技术可应用于阳光电源储能系统的智能调度优化。阳光ST储能变流器在电网侧和工商业场景面临多目标优化挑战,需同时考虑能耗、响应延迟和功率分配。该MBDDQN算法的自适应权重机制可集成到阳光EMS能量管理系统,实现储能系统在削峰填谷、调频调峰和需求响应等多场景下的动态优化。结合阳光iSol...
边缘计算环境中基于分布式深度强化学习的多域物联网网络任务卸载优化
Optimized Task Offloading in Multi-Domain IoT Networks Using Distributed Deep Reinforcement Learning
Ojonukpe Sylvester Egwuche · Japie Greeff · Absalom El-Shamir Ezugwu · IEEE Access · 2025年1月
物联网网络中,传感器、网关和服务在不同层级互操作为终端用户提供服务。IoT设备数量增加且计算能力有限,需要资源高效的网络中间层任务处理。本研究利用深度强化学习智能建模卸载策略为马尔可夫决策过程,将IoT设备视为分布式决策代理,考虑环境动态进行卸载决策。为应对高维度问题实现最优策略,采用深度Q网络建模代理在动态环境中的交互。架构允许IoT边缘节点基于连接、资源可用性和邻近性向边缘服务器卸载任务进行本地决策。不同学习率、批次大小和内存大小的大量仿真显示,所提方案采用CNN近似器生成最优策略,相比传统...
解读: 该边缘计算卸载技术对阳光电源分布式能源物联网具有应用价值。阳光iSolarCloud平台管理大量光伏逆变器和储能设备,边缘侧需要智能决策任务分配。该研究的深度强化学习策略可应用于阳光SG逆变器的边缘AI单元,优化数据处理和上传策略。在大型光伏电站中,该技术可实现组串逆变器与汇流箱、边缘控制器的协同计...
通过结合负荷与光伏预测的迁移学习提升基于强化学习的能量管理
Enhancing Reinforcement Learning-Based Energy Management Through Transfer Learning With Load and PV Forecasting
Chang Xu · Masahiro Inuiguchi · Naoki Hayashi · Wong Jee Keen Raymond 等6人 · IEEE Access · 2025年1月
在可再生能源微电网中,高效能量管理对维持系统稳定性和降低运行成本至关重要。传统强化学习(RL)控制器常面临训练时间长和过程不稳定等问题。本研究提出一种融合迁移学习(TL)技术的新型RL方法,利用ResNet18+BiLSTM等先进预测模型生成的合成数据对RL智能体进行预训练,嵌入领域知识以提升性能。基于一年运行数据的实验结果表明,相较于基线模型,TL增强的RL控制器累计运行成本最高降低62.63%,系统不平衡度改善达80%,并显著提升初始性能与训练效率。该方法展现了TL与RL结合在复杂电力系统实...
解读: 该迁移学习增强的强化学习能量管理技术对阳光电源PowerTitan储能系统和ST系列储能变流器具有重要应用价值。研究中的ResNet18+BiLSTM预测模型可集成至iSolarCloud云平台,提升光伏-储能微电网的实时调度能力。62.63%的成本降低和80%的系统不平衡改善直接契合阳光电源ESS...
生成式人工智能的演进:趋势与应用
The Evolution of Generative AI: Trends and Applications
Maria Trigka · Elias Dritsas · IEEE Access · 2025年1月
生成式AI通过实现文本、图像、音频和结构化数据的高保真内容创建彻底革新AI领域。本综述探讨生成式AI的核心方法、进展、应用和持续挑战,涵盖变分自编码器、生成对抗网络、扩散模型和Transformer架构等关键模型。这些创新推动医疗、科学计算、自然语言处理、计算机视觉和自主系统的突破。尽管取得进展,生成式AI在偏见缓解、可解释性、计算效率和伦理治理方面面临挑战,需要研究可扩展架构、可解释性和AI安全机制。整合强化学习、多模态学习和自监督技术增强生成模型可控性和适应性。随着AI重塑工业自动化、数字媒...
解读: 该生成式AI综述对阳光电源智能化转型具有战略指导意义。阳光可将生成式AI应用于多个领域:电站运维中的故障诊断报告自动生成、光伏发电预测模型优化、储能调度策略智能生成等。结合阳光iSolarCloud平台的海量数据,可构建电力电子领域专用大模型,提升系统智能化水平,加速产品设计和运维优化,推进数字化转...