← 返回
储能系统技术 储能系统 强化学习 ★ 4.0

边缘计算环境中基于分布式深度强化学习的多域物联网网络任务卸载优化

Optimized Task Offloading in Multi-Domain IoT Networks Using Distributed Deep Reinforcement Learning

作者 Ojonukpe Sylvester Egwuche · Japie Greeff · Absalom El-Shamir Ezugwu
期刊 IEEE Access
出版日期 2025年1月
技术分类 储能系统技术
技术标签 储能系统 强化学习
相关度评分 ★★★★ 4.0 / 5.0
关键词 物联网网络 任务卸载 深度强化学习 马尔可夫决策过程 深度Q网络
语言:

中文摘要

物联网网络中,传感器、网关和服务在不同层级互操作为终端用户提供服务。IoT设备数量增加且计算能力有限,需要资源高效的网络中间层任务处理。本研究利用深度强化学习智能建模卸载策略为马尔可夫决策过程,将IoT设备视为分布式决策代理,考虑环境动态进行卸载决策。为应对高维度问题实现最优策略,采用深度Q网络建模代理在动态环境中的交互。架构允许IoT边缘节点基于连接、资源可用性和邻近性向边缘服务器卸载任务进行本地决策。不同学习率、批次大小和内存大小的大量仿真显示,所提方案采用CNN近似器生成最优策略,相比传统Q学习模型和现有算法具有更高收敛性能和更低延迟。

English Abstract

In the Internet of Things (IoT) networks, sensors, gateways, and services interoperate at different levels to provide services to the end users. IoT networks are deployed in different domains for specific tasks that can be monitored from remote locations. The increase in the number of IoT-connected devices and their notable limited computational power calls for resource-efficient and in-between layers of task processing on the network. In this study, we utilized deep reinforcement learning to intelligently model the offloading policies as Markov Decision Process (MDP) for IoT devices in a distributed manner by considering IoT devices as agents that make offloading decisions taking into account the environmental dynamics. To attain optimal policy in the learning process that caters to high dimensionality, deep Q-network was employed to model the agents’ interaction in a dynamic and environment-sensitive manner. The architecture allows local decision-making by IoT edge nodes for tasks offloading to edge servers based on connectivity, resource availability, and proximity. Extensive simulation under different learning rates, batch sizes, and memory sizes shows that the proposed scheme with the utilization of a CNN approximator generates optimal policy and higher convergence performance with lower latency than the conventional Q-learning model and several other existing algorithms.
S

SunView 深度解读

该边缘计算卸载技术对阳光电源分布式能源物联网具有应用价值。阳光iSolarCloud平台管理大量光伏逆变器和储能设备,边缘侧需要智能决策任务分配。该研究的深度强化学习策略可应用于阳光SG逆变器的边缘AI单元,优化数据处理和上传策略。在大型光伏电站中,该技术可实现组串逆变器与汇流箱、边缘控制器的协同计算卸载,降低通信带宽需求,提升实时控制响应速度。结合阳光智能设备的边缘计算能力,该技术可优化电站级数据采集和分析架构,降低云端计算压力,提升系统整体效率。