← 返回
通过结合负荷与光伏预测的迁移学习提升基于强化学习的能量管理
Enhancing Reinforcement Learning-Based Energy Management Through Transfer Learning With Load and PV Forecasting
| 作者 | Chang Xu · Masahiro Inuiguchi · Naoki Hayashi · Wong Jee Keen Raymond · Hazlie Mokhlis · Hazlee Azil Illias |
| 期刊 | IEEE Access |
| 出版日期 | 2025年1月 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 储能系统 微电网 强化学习 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | 微电网 可再生能源 强化学习 迁移学习 能源管理 |
语言:
中文摘要
在可再生能源微电网中,高效能量管理对维持系统稳定性和降低运行成本至关重要。传统强化学习(RL)控制器常面临训练时间长和过程不稳定等问题。本研究提出一种融合迁移学习(TL)技术的新型RL方法,利用ResNet18+BiLSTM等先进预测模型生成的合成数据对RL智能体进行预训练,嵌入领域知识以提升性能。基于一年运行数据的实验结果表明,相较于基线模型,TL增强的RL控制器累计运行成本最高降低62.63%,系统不平衡度改善达80%,并显著提升初始性能与训练效率。该方法展现了TL与RL结合在复杂电力系统实时能量管理中的应用潜力。
English Abstract
Effective energy management in microgrids with renewable energy sources is crucial for maintaining system stability while minimizing operational costs. However, traditional Reinforcement Learning (RL) controllers often encounter challenges, including long training time and instability during the training process. This study introduces a novel approach that integrates Transfer Learning (TL) techniques with RL controllers to address these issues. By using synthetic datasets generated by advanced forecasting models, such as ResNet18+BiLSTM, the proposed method pre-trains RL agents, embedding domain knowledge to enhance performance. The results, based on one year of operational data, show that TL-enhanced RL controllers significantly reduce cumulative operation costs and system imbalance, achieving up to a 62.63% reduction in costs and an 80% improvement in balance compared to baseline models. Furthermore, the proposed method improves initial performance and shortens the training duration needed to reach operational thresholds. This approach demonstrates the potential of combining TL with RL to develop efficient, cost-effective solutions for real-time energy management in complex power systems.
S
SunView 深度解读
该迁移学习增强的强化学习能量管理技术对阳光电源PowerTitan储能系统和ST系列储能变流器具有重要应用价值。研究中的ResNet18+BiLSTM预测模型可集成至iSolarCloud云平台,提升光伏-储能微电网的实时调度能力。62.63%的成本降低和80%的系统不平衡改善直接契合阳光电源ESS集成方案的优化目标。迁移学习预训练机制可加速不同应用场景(工商业储能、户用储能、充电桩配储)的控制策略部署,显著缩短现场调试周期。该方法与阳光电源现有的MPPT算法和构网型GFM控制技术形成协同,为智能诊断和预测性维护提供AI决策支持,推动储能系统向自主学习型能量管理升级。