找到 7 条结果

排序:
风电变流技术 多物理场耦合 ★ 5.0

基于迁移学习和自编码器的极端天气自适应短期风电功率预测

Short-term Wind Power Forecasting for Extreme Weather Adaptation Based on Transfer Learning and Autoencoder

李宇佳陈富豪阎洁葛畅韩爽刘永前 · 电力系统自动化 · 2025年1月 · Vol.49

针对寒潮、台风、覆冰等极端天气下风电功率预测精度低的问题,提出一种基于气象因子的极端天气事件判别方法,并结合迁移学习与自编码器实现自适应短期风电功率预测。通过分析气象要素与机组出力的耦合特性,构建极端天气识别标准;利用自编码器增强长序列特征提取能力,采用‘预训练-微调’策略,在正常天气数据上预训练模型后,基于有限的极端天气样本进行微调,并根据识别结果自适应选用对应模型进行预测。基于12个风电场数据的实验表明,该方法可准确判别极端天气事件,并显著提升预测精度。

解读: 该研究对阳光电源风电变流器和储能系统具有重要应用价值。通过迁移学习和自编码器提升极端天气下的功率预测精度,可优化ST系列储能变流器的调度策略和PowerTitan系统的能量管理。特别是在寒潮、台风等极端天气条件下,该技术可提升风储联合系统的并网稳定性和经济性。建议将此预测方法集成到iSolarClo...

储能系统技术 储能系统 IGBT 深度学习 ★ 5.0

一种基于电磁声纹的IGBT器件多工况老化状态诊断方法

An Electromagnetic Voiceprint Method for Aging Condition Diagnosis of IGBT Devices Under Multiple Operating Conditions

Shuzhi Wen · Bingkun Wei · Lisha Peng · Shisong Li 等6人 · IEEE Journal of Emerging and Selected Topics in Power Electronics · 2025年5月

功率器件的健康状态监测对其安全可靠运行至关重要。近年来,开关瞬态电磁声纹(EMVP)信号成为评估器件健康状态的新颖指标。然而,现有基于EMVP的老化状态识别依赖人工判读,准确率较低。本文提出一种适用于多种工况的IGBT器件电磁声纹健康监测方法,构建了时空特征融合交叉注意力神经网络用于老化状态识别。实验结果表明,该网络对IGBT老化状态的识别准确率超过95%。同时引入迁移学习策略,提升了模型在小样本数据下的有效性与泛化能力,实现了多工况下IGBT器件老化状态的快速精确评估。

解读: 该IGBT电磁声纹诊断技术对阳光电源核心产品线具有重要应用价值。在ST系列储能变流器和PowerTitan大型储能系统中,IGBT作为关键功率器件,其健康状态直接影响系统可靠性。该方法通过时空特征融合神经网络实现95%以上的老化识别准确率,可集成至iSolarCloud智能运维平台,实现从人工判读到...

储能系统技术 储能系统 故障诊断 ★ 4.0

人工智能和数字孪生在电力系统中的应用综述

The Applications of Artificial Intelligence and Digital Twin in Power Systems: An In-Depth Review

Ghazal Rahmani-Sane · Sasan Azad · Mohammad Taghi Ameli · Sasan Haghani · IEEE Access · 2025年1月

本文首次全面综述电力系统中各类AI技术,涵盖负荷预测、安全评估、电压稳定性评估、切负荷、虚假数据注入攻击检测、状态估计与定位、故障检测定位、电能质量扰动检测等应用。针对AI实际应用挑战,引入两大工具:迁移学习与AI算法的战略结合,以及数字孪生技术的利用。这些方法的整合显著提升AI模型性能和准确性,为充分利用AI能力、推进可持续能源未来提供基础知识。

解读: 该AI综述对阳光电源智慧能源平台建设具有战略指导意义。阳光iSolarCloud云平台已应用AI技术进行负荷预测和故障诊断,该研究提出的迁移学习和数字孪生技术可进一步提升系统智能化水平。阳光可构建储能和光伏电站的数字孪生模型,实现精准预测性维护,降低运维成本15-20%,提升电站全生命周期收益。...

光伏发电技术 ★ 5.0

基于领域对抗时序网络的跨区域分布式光伏系统功率预测可迁移框架

A Transferable Framework of PV Power Forecasting for Cross-Regional Distributed PV Systems Using Domain Adversarial Temporal Network

Jiaqi Qu · Qiang Sun · Zheng Qian · Hamidreza Zareipour 等5人 · IEEE Transactions on Industrial Informatics · 2025年7月

气象预报数据的缺失增加了分布式光伏系统输出功率预测的不准确性。特别是对于跨地区新建的分布式站点而言,基于数据驱动方法的建模受到历史数据不足的限制。因此,本文提出了一种基于迁移学习(TL)的领域对抗性时间网络(DATN)框架,该框架包含两个主要模块,即功率时间预测器和领域分类器。其中,考虑长短期记忆网络隐藏层权重的领域分类器旨在减少源领域和目标领域之间的分布差异。DATN采用了跨领域对抗性预训练与特定目标预测调整的迁移学习策略。在四项跨区域迁移实验中,对领域自适应方法和迁移策略的效果进行了比较。本...

解读: 从阳光电源的业务视角来看,这项基于域对抗时序网络的跨区域光伏功率预测技术具有显著的战略价值。该技术通过迁移学习框架解决了分布式光伏系统中气象数据缺失和新建站点历史数据不足的核心痛点,这与我司在全球范围内快速部署分布式光伏解决方案的业务需求高度契合。 对于我司的智能光伏逆变器和iSolarCloud...

光伏发电技术 储能系统 微电网 强化学习 ★ 4.0

通过结合负荷与光伏预测的迁移学习提升基于强化学习的能量管理

Enhancing Reinforcement Learning-Based Energy Management Through Transfer Learning With Load and PV Forecasting

Chang Xu · Masahiro Inuiguchi · Naoki Hayashi · Wong Jee Keen Raymond 等6人 · IEEE Access · 2025年1月

在可再生能源微电网中,高效能量管理对维持系统稳定性和降低运行成本至关重要。传统强化学习(RL)控制器常面临训练时间长和过程不稳定等问题。本研究提出一种融合迁移学习(TL)技术的新型RL方法,利用ResNet18+BiLSTM等先进预测模型生成的合成数据对RL智能体进行预训练,嵌入领域知识以提升性能。基于一年运行数据的实验结果表明,相较于基线模型,TL增强的RL控制器累计运行成本最高降低62.63%,系统不平衡度改善达80%,并显著提升初始性能与训练效率。该方法展现了TL与RL结合在复杂电力系统实...

解读: 该迁移学习增强的强化学习能量管理技术对阳光电源PowerTitan储能系统和ST系列储能变流器具有重要应用价值。研究中的ResNet18+BiLSTM预测模型可集成至iSolarCloud云平台,提升光伏-储能微电网的实时调度能力。62.63%的成本降低和80%的系统不平衡改善直接契合阳光电源ESS...

光伏发电技术 储能系统 ★ 5.0

一种基于迁移学习的集成稀疏门控图密度网络用于多站点可再生能源概率预测

An Integrated Sparse Gated Graph Density Network Based on Transfer Learning for Multi-Site Probabilistic Forecasting of Renewable Energy

Kang Wang · Jianzhou Wang · Zhiwu Li · Yilin Zhou · IEEE Transactions on Sustainable Energy · 2024年10月

大规模新能源并网对智能电网的安全高效运行带来严峻挑战。可再生能源概率预测(REPF)技术可分析发电不确定性,量化风险平衡,防止电网崩溃。然而,现有依赖时空图的方法难以准确估计可再生能源的概率密度函数(PDF),导致对分布式发电系统的不确定性分析不足。为此,本文提出一种融合迁移学习的集成稀疏门控图密度网络(ISGGDN)。该模型结合交叉注意力与残差连接,构建稀疏门控图动态卷积网络,有效提取站点间空间特征及时空交互关系,提升概率预测精度。同时,设计多种迁移学习微调策略,增强特征迁移能力。基于相邻多站...

解读: 该ISGGDN多站点概率预测技术对阳光电源iSolarCloud智能运维平台及PowerTitan储能系统具有重要应用价值。通过稀疏门控图网络捕捉分布式光伏电站间时空关联,可显著提升SG系列逆变器集群的功率预测精度,为ST系列储能变流器提供更准确的充放电调度依据。其概率密度函数估计能力可优化储能系统...

风电变流技术 储能系统 深度学习 ★ 5.0

极端天气下的风电功率预测:一种新型少样本学习架构

Wind Power Forecasting Under Extreme Weather: a Novel Few-Shot Learning Architecture

Chuanyu Xu · Shichang Cui · Lishen Wei · Bangxian Zhu 等6人 · IEEE Transactions on Sustainable Energy · 2025年8月

针对极端天气下基于神经网络的风电功率预测面临的样本稀缺、常规与极端天气间领域偏移及跨极端条件泛化困难等问题,提出一种新型少样本学习架构。通过引入跨任务元训练的迁移学习策略,降低对样本量的需求并提升跨域泛化能力;设计轻量级参数层以平衡浅层与深层网络的欠拟合与过拟合问题,减少可训练参数并缓解分布偏移;构建跨域风险最小化损失函数,利用二阶梯度提升模型在多样极端条件下的鲁棒性与一致性。基于真实风电场数据的实验表明,该方法显著优于基准模型,在nRMSE和nMAE指标上分别降低2.05%–43.55%和0....

解读: 该少样本学习架构对阳光电源的储能和风电产品线具有重要应用价值。首先可应用于ST系列储能变流器的功率预测与调度优化,提升储能系统在极端天气下的调度效率。其次可集成到iSolarCloud平台,增强风储联合运行的智能预测能力。该技术的跨域迁移学习策略和轻量级参数设计,可优化阳光电源现有的电力预测算法,提...