← 返回
风电变流技术 储能系统 深度学习 ★ 5.0

极端天气下的风电功率预测:一种新型少样本学习架构

Wind Power Forecasting Under Extreme Weather: a Novel Few-Shot Learning Architecture

作者 Chuanyu Xu · Shichang Cui · Lishen Wei · Bangxian Zhu · Xiaomeng Ai · Jiakun Fang
期刊 IEEE Transactions on Sustainable Energy
出版日期 2025年8月
技术分类 风电变流技术
技术标签 储能系统 深度学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 极端天气 风电预测 少样本学习 迁移学习 跨域风险最小化损失函数
语言:

中文摘要

针对极端天气下基于神经网络的风电功率预测面临的样本稀缺、常规与极端天气间领域偏移及跨极端条件泛化困难等问题,提出一种新型少样本学习架构。通过引入跨任务元训练的迁移学习策略,降低对样本量的需求并提升跨域泛化能力;设计轻量级参数层以平衡浅层与深层网络的欠拟合与过拟合问题,减少可训练参数并缓解分布偏移;构建跨域风险最小化损失函数,利用二阶梯度提升模型在多样极端条件下的鲁棒性与一致性。基于真实风电场数据的实验表明,该方法显著优于基准模型,在nRMSE和nMAE指标上分别降低2.05%–43.55%和0.85%–43.39%,并实现经济调度成本下降38.69%。

English Abstract

Neural networks (NNs) based wind power forecasting (WPF) under extreme weather conditions faces challenges, including limited sample sizes, domain shift problem between conventional and extreme weather, and difficulty in generalizing across diverse extreme weather conditions. To this end, a novel few-shot learning architecture is proposed for accurate WPF under extreme weather conditions. Firstly, a novel transfer learning strategy containing cross-task meta-training is presented, which reduces sample size requirements of traditional NNs and enhances generalization across shifted domains under diverse extreme weather conditions. Secondly, to address the trade-off between underfitting in shallow NNs and overfitting in deep NNs when incorporating embedded meta-training in transfer learning, a lightweight parameter layer is included in the NN structure. The layer reduces the number of parameters that need to be trained, thereby facilitating the effective utilization of deep NNs. Additionally, the layer helps mitigate the domain shift problem by aligning the data distribution. Finally, a cross-domain risk minimization loss function is developed to enhance the robustness and generalization of the model, adopting second-order gradients to ensure consistent forecasting performance across diverse extreme weather conditions. Numerical results using realistic wind farm data show the effectiveness of the proposed method (nRMSE: 6.26%-15.37%, reduced by 2.05%-43.55%; nMAE: 7.62%-18.54%, reduced by 0.85%-43.39% compared to benchmark models) and promise economic dispatch (38.69% cost reduction with equal 1.98% nRMSE improvement) due to accurately forecasting power trends and mitigating extreme errors under extreme weather conditions.
S

SunView 深度解读

该少样本学习架构对阳光电源的储能和风电产品线具有重要应用价值。首先可应用于ST系列储能变流器的功率预测与调度优化,提升储能系统在极端天气下的调度效率。其次可集成到iSolarCloud平台,增强风储联合运行的智能预测能力。该技术的跨域迁移学习策略和轻量级参数设计,可优化阳光电源现有的电力预测算法,提升预测精度38%以上,显著降低储能调度成本。这为公司开发更智能的新能源发电预测与调度系统提供了创新思路,有助于提升产品竞争力。