找到 6 条结果

排序:
风电变流技术 ★ 5.0

基于贝叶斯特征选择的区域风电功率预测

Regional Wind Power Forecasting Based on Bayesian Feature Selection

Theodoros Konstantinou · Nikos Hatziargyriou · IEEE Transactions on Power Systems · 2024年4月

近年来,可再生能源在电力系统中的整合程度不断提高。其固有的不可预测性和输出波动给电力系统的安全运行和能源市场定价的稳定性带来了挑战。因此,准确预测可再生能源发电量至关重要。目前已应用的几种有效预测方法均基于机器学习(ML)。应用机器学习方法的一个关键因素是输入特征的选择,在区域风电预测中,这一任务变得更为复杂,因为区域范围可能涵盖整个国家。所提出的方法旨在通过一种数据驱动的、与模型无关的预处理技术精简输入特征,从而提高预测性能。该技术包括将多维数值天气预报数据划分为多个子区域,并剔除无信息的子区...

解读: 该贝叶斯特征选择的预测方法对阳光电源的储能与风电产品线具有重要应用价值。特别是在ST系列储能变流器和风电变流器的智能调度优化方面,可将该预测算法集成到iSolarCloud平台,提升系统对风电功率波动的预判能力。通过筛选关键气象特征与历史数据,可优化储能系统的充放电策略,提高PowerTitan等大...

风电变流技术 储能系统 深度学习 ★ 5.0

面向多方风电功率预测的隐私保护自适应联邦深度学习

Privacy-Preserving and Adaptive Federated Deep Learning for Multiparty Wind Power Forecasting

Yi Wang · Qinglai Guo · IEEE Transactions on Industry Applications · 2024年7月

先进的预测工具对于现代电力系统减轻可再生能源的不确定性至关重要。尽管数据驱动的方法在风电预测方面取得了显著进展,但数据可用性有限阻碍了其有效性。严格的数据监管规则和竞争利益使得相邻风电场无法整合数据集以学习更准确的预测模型。为应对这一挑战,我们提出了 SecFedAProx - LSTM,这是一种结合深度学习模型和隐私保护自适应联邦学习框架的新型风电预测方法。该方法动态调整局部优化目标,以在全局收敛性能和探索个体特征之间取得平衡,从而解决统计异质性问题。此外,它采用去中心化多客户端功能加密进行安...

解读: 从阳光电源的业务视角来看,本文提出的隐私保护自适应联邦学习风电预测方法具有重要的战略参考价值。虽然研究聚焦于风电场景,但其核心技术框架可直接迁移至光伏功率预测、储能系统优化及多能源协同管理等阳光电源的核心业务领域。 该技术的核心价值在于突破了数据孤岛困境。当前阳光电源在全球部署了大量光伏电站和储能...

风电变流技术 ★ 5.0

将季内振荡与数值天气预报结合用于15天风电功率预测

Integrating Intra-Seasonal Oscillations With Numerical Weather Prediction for 15-Day Wind Power Forecasting

Shuang Han · Weiye Song · Jie Yan · Ning Zhang 等6人 · IEEE Transactions on Power Systems · 2025年2月

延长风电功率预测(WPF)的时间尺度对于以可再生能源为主的电力系统的电网管理和市场运营至关重要。然而,风电功率预测对数值天气预报(NWP)的高度依赖带来了巨大挑战。基于短期数据的数值天气预报迭代运算会放大其固有的不确定性,导致其超过10天的预报精度降低。为解决这一问题,引入季节内振荡(ISO)来捕捉更长期、更大尺度的气象模式,进而提出了用于15天风电功率预测的ISO - NWP集成框架。首先,开发了一个遥相关(TC)的历史时空定位模型,该模型在季节内振荡的影响下关联远距离的天气变化和风电功率波动...

解读: 该研究对阳光电源的风电变流器和储能系统具有重要应用价值。通过融合季内振荡预测与数值天气预报的混合建模方法,可显著提升风电功率预测精度,这对我司ST系列储能变流器的调度策略优化和PowerTitan储能系统的容量配置具有直接指导意义。具体而言,可将该预测算法集成到iSolarCloud平台,优化储能调...

风电变流技术 储能系统 可靠性分析 ★ 5.0

基于过渡天气识别与气象预测误差传播的两阶段超短期风电功率预测方法

A Two-Stage Ultra-Short-Term Wind Power Forecasting Method Based on Transitional Weather Identification and Meteorological Prediction Error Propagation

Wei Zhang · Hang Sun · Jiyuan Gao · Gangui Yan 等5人 · IEEE Transactions on Sustainable Energy · 2025年7月

精确的风电功率预测对电力系统安全经济运行至关重要。然而,在过渡天气条件下,风速等气象变量的预测误差增大,导致输入噪声增加,降低预测模型可靠性。本文分析气象输入变量的误差传播机制,提出一种提升过渡天气下短期风电预测精度的策略。首先通过多维气象变量波动特征识别过渡天气时段,进而构建稀疏变分高斯过程(SVGP)与含噪输入高斯过程(NIGP)相结合的两阶段模型,将含噪输入分解为真实数据与噪声并独立建模。通过考虑输入噪声在风电预测中的传播过程并进行修正,SVGP-NIGP模型显著提高了确定性预测精度与区间...

解读: 该风电预测方法对阳光电源储能与风电产品线具有重要应用价值。特别是在ST系列储能变流器和风电变流器中,可将SVGP-NIGP预测模型集成到控制算法中,提升系统在过渡天气下的调度精度。通过对气象预测误差的量化与修正,可优化PowerTitan储能系统的充放电策略,提高新能源-储能联合运行效率。该技术还可...

风电变流技术 储能系统 深度学习 ★ 5.0

极端天气下的风电功率预测:一种新型少样本学习架构

Wind Power Forecasting Under Extreme Weather: a Novel Few-Shot Learning Architecture

Chuanyu Xu · Shichang Cui · Lishen Wei · Bangxian Zhu 等6人 · IEEE Transactions on Sustainable Energy · 2025年8月

针对极端天气下基于神经网络的风电功率预测面临的样本稀缺、常规与极端天气间领域偏移及跨极端条件泛化困难等问题,提出一种新型少样本学习架构。通过引入跨任务元训练的迁移学习策略,降低对样本量的需求并提升跨域泛化能力;设计轻量级参数层以平衡浅层与深层网络的欠拟合与过拟合问题,减少可训练参数并缓解分布偏移;构建跨域风险最小化损失函数,利用二阶梯度提升模型在多样极端条件下的鲁棒性与一致性。基于真实风电场数据的实验表明,该方法显著优于基准模型,在nRMSE和nMAE指标上分别降低2.05%–43.55%和0....

解读: 该少样本学习架构对阳光电源的储能和风电产品线具有重要应用价值。首先可应用于ST系列储能变流器的功率预测与调度优化,提升储能系统在极端天气下的调度效率。其次可集成到iSolarCloud平台,增强风储联合运行的智能预测能力。该技术的跨域迁移学习策略和轻量级参数设计,可优化阳光电源现有的电力预测算法,提...

风电变流技术 深度学习 ★ 5.0

增强局部峰值点的风电功率预测:一种新型Seq2LPP模型

Enhancing Wind Power Forecasting at Local Peak Points: A Novel Seq2LPP Model

Nanyang Zhu · Ying Wang · Kun Yuan · Yanxia Pan 等5人 · IEEE Transactions on Industrial Informatics · 2025年1月

挖掘基于深度学习(DL)的模型在局部峰值点(LPPs)风电功率预测方面的潜力,仍是一个至关重要但尚未充分探索的方向。尽管现有的基于深度学习的模型在常规风电功率预测(WPF)中表现出色,但它们主要侧重于优化预测时域内整体风电功率预测的平均精度,因此在局部峰值点的预测中表现不佳。由于局部峰值点的风电功率存在大幅波动和非平稳性,基于深度学习的模型更难对其进行预测。考虑到局部峰值点与多源数值天气预报(NWP)数据之间存在强相关性,我们提出了一种由多源数值天气预报数据驱动的新型Seq2LPP模型,以加深对...

解读: 从阳光电源新能源系统集成商的视角来看,该论文提出的Seq2LPP模型针对风电功率预测中局部峰值点(LPPs)的精准预测问题,具有重要的实际应用价值。虽然我司业务以光伏逆变器和储能系统为核心,但在"风光储一体化"和综合能源解决方案领域,精准的风电功率预测直接影响系统调度优化和储能配置策略。 该模型的...