← 返回
风电变流技术
★ 5.0
将季内振荡与数值天气预报结合用于15天风电功率预测
Integrating Intra-Seasonal Oscillations With Numerical Weather Prediction for 15-Day Wind Power Forecasting
| 作者 | Shuang Han · Weiye Song · Jie Yan · Ning Zhang · Han Wang · Chang Ge |
| 期刊 | IEEE Transactions on Power Systems |
| 出版日期 | 2025年2月 |
| 技术分类 | 风电变流技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 风电预测 数值天气预报 季节内振荡 遥相关 集成框架 |
语言:
中文摘要
延长风电功率预测(WPF)的时间尺度对于以可再生能源为主的电力系统的电网管理和市场运营至关重要。然而,风电功率预测对数值天气预报(NWP)的高度依赖带来了巨大挑战。基于短期数据的数值天气预报迭代运算会放大其固有的不确定性,导致其超过10天的预报精度降低。为解决这一问题,引入季节内振荡(ISO)来捕捉更长期、更大尺度的气象模式,进而提出了用于15天风电功率预测的ISO - NWP集成框架。首先,开发了一个遥相关(TC)的历史时空定位模型,该模型在季节内振荡的影响下关联远距离的天气变化和风电功率波动。随后,设计了一个遥相关自动选择网络作为风电功率预测网络的编码器,该编码器集成了ISO - NWP,并通过张量内积计算遥相关的动态权重。接着,设计了一个趋势 - 细节顺序网络作为解码器,通过学习趋势和详细波动来增强对长风电功率序列的拟合能力。最后,利用中国3个省份26座风电场组成的3个风电场集群的实际数据验证了该框架的有效性。
English Abstract
Extending the timescale of wind power forecasting (WPF) is vital for grid management and market operations in renewable-dominated power systems. However, the substantial dependence of WPF on numerical weather prediction (NWP) presents a considerable challenge. The iterative operations of NWP based on short-term data amplify its inherent uncertainty, reducing its accuracy beyond 10 days. To address this, intra-seasonal oscillation (ISO) is introduced to capture longer-term and larger-scale meteorological patterns, leading to the proposition of an ISO-NWP integrated framework for 15-day WPF. Firstly, a historical spatiotemporal localization model for teleconnections (TC) is developed, which connects distant weather changes and wind power fluctuations under ISO. Subsequently, a TC automatic selection network is designed as the encoder of the WPF network, which integrates ISO-NWP and computes dynamic weights of TC through tensor inner products. Following this, a trend-detail sequential network is designed as the decoder, enhancing the ability to fit long wind power sequences by learning both trends and detailed fluctuations. Lastly, the effectiveness is validated using real data from 3 wind farm clusters, encompassing 26 wind farms across 3 provinces in China.
S
SunView 深度解读
该研究对阳光电源的风电变流器和储能系统具有重要应用价值。通过融合季内振荡预测与数值天气预报的混合建模方法,可显著提升风电功率预测精度,这对我司ST系列储能变流器的调度策略优化和PowerTitan储能系统的容量配置具有直接指导意义。具体而言,可将该预测算法集成到iSolarCloud平台,优化储能调度的经济性;同时为风储联合项目中的功率平滑控制提供更可靠的预测支撑。这一技术创新启发我们在智能运维领域深化机器学习应用,提升新能源电站的调度效率和经济效益。