← 返回
基于过渡天气识别与气象预测误差传播的两阶段超短期风电功率预测方法
A Two-Stage Ultra-Short-Term Wind Power Forecasting Method Based on Transitional Weather Identification and Meteorological Prediction Error Propagation
| 作者 | Wei Zhang · Hang Sun · Jiyuan Gao · Gangui Yan · Mao Yang |
| 期刊 | IEEE Transactions on Sustainable Energy |
| 出版日期 | 2025年7月 |
| 技术分类 | 风电变流技术 |
| 技术标签 | 储能系统 可靠性分析 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 过渡天气 风电预测 误差传播机制 SVGP - NIGP模型 预测精度 |
语言:
中文摘要
精确的风电功率预测对电力系统安全经济运行至关重要。然而,在过渡天气条件下,风速等气象变量的预测误差增大,导致输入噪声增加,降低预测模型可靠性。本文分析气象输入变量的误差传播机制,提出一种提升过渡天气下短期风电预测精度的策略。首先通过多维气象变量波动特征识别过渡天气时段,进而构建稀疏变分高斯过程(SVGP)与含噪输入高斯过程(NIGP)相结合的两阶段模型,将含噪输入分解为真实数据与噪声并独立建模。通过考虑输入噪声在风电预测中的传播过程并进行修正,SVGP-NIGP模型显著提高了确定性预测精度与区间预测质量,实验结果验证了该方法在应对气象预测不确定性方面的有效性。
English Abstract
Accurate and reliable wind power forecasting is crucial for the safe and economical operation of power systems. However, under transitional weather conditions, the forecasting errors of meteorological variables such as wind speed tend to increase, introducing significant input noise into wind power prediction models and reducing their reliability. To address this, this paper focuses on analyzing the error propagation mechanism of meteorological input variables and proposes a strategy to improve short-term wind power forecasting accuracy under transitional weather conditions. First, transitional weather periods are identified by analyzing the fluctuation characteristics of multi-dimensional meteorological variables. Then, a two-stage model combining Sparse Variational Gaussian Process (SVGP) and Noisy Input Gaussian Process (NIGP) is proposed. In this model, noisy input data (wind speed predictions) are decomposed into true data (actual wind speed) and noise data (forecast errors), which are modeled independently. By considering the propagation process of input noise in wind power forecasting and making necessary corrections, the SVGP-NIGP model provides more accurate deterministic forecasts and higher-quality interval predictions. Experimental results show that the proposed method significantly enhances wind power forecasting accuracy under transitional weather conditions, offering an effective solution to address the uncertainties arising from meteorological forecasting.
S
SunView 深度解读
该风电预测方法对阳光电源储能与风电产品线具有重要应用价值。特别是在ST系列储能变流器和风电变流器中,可将SVGP-NIGP预测模型集成到控制算法中,提升系统在过渡天气下的调度精度。通过对气象预测误差的量化与修正,可优化PowerTitan储能系统的充放电策略,提高新能源-储能联合运行效率。该技术还可集成到iSolarCloud平台,为风储联合项目提供更准确的发电预测与调度建议,助力阳光电源在风电储能领域的技术创新。建议将其应用于ST2752XP等大功率储能产品的智能调度优化。