← 返回
风电变流技术
★ 5.0
基于贝叶斯特征选择的区域风电功率预测
Regional Wind Power Forecasting Based on Bayesian Feature Selection
| 作者 | Theodoros Konstantinou · Nikos Hatziargyriou |
| 期刊 | IEEE Transactions on Power Systems |
| 出版日期 | 2024年4月 |
| 技术分类 | 风电变流技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 可再生能源发电 机器学习 输入特征 数据驱动预处理 风电预测 |
语言:
中文摘要
近年来,可再生能源在电力系统中的整合程度不断提高。其固有的不可预测性和输出波动给电力系统的安全运行和能源市场定价的稳定性带来了挑战。因此,准确预测可再生能源发电量至关重要。目前已应用的几种有效预测方法均基于机器学习(ML)。应用机器学习方法的一个关键因素是输入特征的选择,在区域风电预测中,这一任务变得更为复杂,因为区域范围可能涵盖整个国家。所提出的方法旨在通过一种数据驱动的、与模型无关的预处理技术精简输入特征,从而提高预测性能。该技术包括将多维数值天气预报数据划分为多个子区域,并剔除无信息的子区域。最优划分和剔除参数的选择由贝叶斯序贯优化过程指导,该过程基于先前迭代的先验知识。所提出的方法已应用于东南欧三个国家区域层面汇总的实际风电测量数据,以证明其在提升流行的数据驱动预测方法性能方面的有效性。
English Abstract
In recent years, the integration of renewable energy sources in power systems has been increasing. Their inherent unpredictability and output fluctuations pose challenges to secure power system operations and energy market pricing stability. Therefore, an accurate forecast of renewable energy generation is crucial. Several effective forecasting methods that have been applied are based on Machine Learning (ML). A key factor in the application of ML methods is the choice of input features, a task that has become more complex in regional wind power forecasting, where regions can cover entire countries. The proposed method aims to improve forecasting performance by streamlining input features through a data-driven model-agnostic preprocessing technique. This involves splitting the multidimensional numerical weather predictions into subareas and eliminating non-informative subareas. The selection of optimal split and remove parameters is guided by a Bayesian sequential optimisation process, which builds on prior knowledge from previous iterations. The proposed method has been implemented on actual wind power measurements aggregated at regional level for three countries located in Southeastern Europe to demonstrate the effectiveness in improving the performance of popular data-driven forecasting methods.
S
SunView 深度解读
该贝叶斯特征选择的预测方法对阳光电源的储能与风电产品线具有重要应用价值。特别是在ST系列储能变流器和风电变流器的智能调度优化方面,可将该预测算法集成到iSolarCloud平台,提升系统对风电功率波动的预判能力。通过筛选关键气象特征与历史数据,可优化储能系统的充放电策略,提高PowerTitan等大型储能系统的调峰效率。同时,该方法也可用于改进构网型GFM控制的预测控制算法,增强储能变流器对风电波动的快速响应能力。这对提升阳光电源新能源并网产品的智能化水平具有积极意义。