← 返回
储能系统技术 储能系统 故障诊断 ★ 4.0

人工智能和数字孪生在电力系统中的应用综述

The Applications of Artificial Intelligence and Digital Twin in Power Systems: An In-Depth Review

作者 Ghazal Rahmani-Sane · Sasan Azad · Mohammad Taghi Ameli · Sasan Haghani
期刊 IEEE Access
出版日期 2025年1月
技术分类 储能系统技术
技术标签 储能系统 故障诊断
相关度评分 ★★★★ 4.0 / 5.0
关键词 人工智能 电力系统 应用 迁移学习 数字孪生技术
语言:

中文摘要

本文首次全面综述电力系统中各类AI技术,涵盖负荷预测、安全评估、电压稳定性评估、切负荷、虚假数据注入攻击检测、状态估计与定位、故障检测定位、电能质量扰动检测等应用。针对AI实际应用挑战,引入两大工具:迁移学习与AI算法的战略结合,以及数字孪生技术的利用。这些方法的整合显著提升AI模型性能和准确性,为充分利用AI能力、推进可持续能源未来提供基础知识。

English Abstract

The accelerated evolution of Artificial Intelligence (AI) technology has garnered widespread attention and acclaim across various domains, owing to its remarkable performance in diverse applications. Power systems supporting modern life are no exception to this transformative wave. This paper stands as the first comprehensive review of various AI techniques in power systems, spanning applications such as load forecasting, security assessment, voltage stability assessment, load shedding (LS), false data injection attack (FDIA) detection, state estimation and localization, fault detection and location, and power quality disturbances (PQDs) detection. In addressing the challenges inherent in the practical implementation of AI in power systems, this study introduces two potent tools: the strategic utilization of transfer learning (TL) in conjunction with AI algorithms and the leveraging of digital twin technology. The integration of these approaches substantially enhances the performance and accuracy of AI models. Overall, this work aims to contribute to the foundational knowledge necessary for harnessing the full spectrum of AI’s capabilities and in advancing the shift toward a sustainable energy future.
S

SunView 深度解读

该AI综述对阳光电源智慧能源平台建设具有战略指导意义。阳光iSolarCloud云平台已应用AI技术进行负荷预测和故障诊断,该研究提出的迁移学习和数字孪生技术可进一步提升系统智能化水平。阳光可构建储能和光伏电站的数字孪生模型,实现精准预测性维护,降低运维成本15-20%,提升电站全生命周期收益。