← 返回
一种基于电磁声纹的IGBT器件多工况老化状态诊断方法
An Electromagnetic Voiceprint Method for Aging Condition Diagnosis of IGBT Devices Under Multiple Operating Conditions
| 作者 | Shuzhi Wen · Bingkun Wei · Lisha Peng · Shisong Li · Weijie Kong · Baotong Xiao |
| 期刊 | IEEE Journal of Emerging and Selected Topics in Power Electronics |
| 出版日期 | 2025年5月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 IGBT 深度学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 电力电子设备 电磁语音印信号 IGBT器件 老化状态识别 迁移学习 |
语言:
中文摘要
功率器件的健康状态监测对其安全可靠运行至关重要。近年来,开关瞬态电磁声纹(EMVP)信号成为评估器件健康状态的新颖指标。然而,现有基于EMVP的老化状态识别依赖人工判读,准确率较低。本文提出一种适用于多种工况的IGBT器件电磁声纹健康监测方法,构建了时空特征融合交叉注意力神经网络用于老化状态识别。实验结果表明,该网络对IGBT老化状态的识别准确率超过95%。同时引入迁移学习策略,提升了模型在小样本数据下的有效性与泛化能力,实现了多工况下IGBT器件老化状态的快速精确评估。
English Abstract
Health status monitoring of power electronic devices is essential for ensuring their safe and reliable operation. In recent years, monitoring switching transient electromagnetic voiceprint (EMVP) signals has emerged as a promising new indicator for assessing device health. However, the identification of aging states based on EMVP still relies on manual interpretation, leading to low accuracy. This paper presents a health status monitoring method for Insulated Gate Bipolar Transistor (IGBT) devices using EMVP signals, applicable across various operating conditions. Specifically, we propose a spatiotemporal feature fusion cross attention neural network for aging state identification. Experimental results demonstrate that the network achieves an accuracy of over 95% in detecting the aging state of IGBT devices. Furthermore, a transfer learning approach is introduced to improve the model’s effectiveness and generalization ability when working with small sample datasets. The proposed monitoring method facilitates accurate and rapid evaluation of IGBT device aging states under diverse operational conditions.
S
SunView 深度解读
该IGBT电磁声纹诊断技术对阳光电源核心产品线具有重要应用价值。在ST系列储能变流器和PowerTitan大型储能系统中,IGBT作为关键功率器件,其健康状态直接影响系统可靠性。该方法通过时空特征融合神经网络实现95%以上的老化识别准确率,可集成至iSolarCloud智能运维平台,实现从人工判读到自动化预测性维护的升级。多工况适应性和迁移学习策略特别适合阳光电源产品面临的复杂应用场景(光伏逆变器的MPPT波动、储能系统的充放电切换、充电桩的功率阶跃等)。该技术可显著提升SiC/IGBT功率模块的全生命周期管理能力,降低突发故障率,为构网型GFM控制等高可靠性应用提供硬件健康保障。