← 返回
光伏发电技术 储能系统 ★ 5.0

一种基于迁移学习的集成稀疏门控图密度网络用于多站点可再生能源概率预测

An Integrated Sparse Gated Graph Density Network Based on Transfer Learning for Multi-Site Probabilistic Forecasting of Renewable Energy

作者 Kang Wang · Jianzhou Wang · Zhiwu Li · Yilin Zhou
期刊 IEEE Transactions on Sustainable Energy
出版日期 2024年10月
技术分类 光伏发电技术
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 新能源并网 可再生能源概率预测 集成稀疏门控图密度网络 迁移学习 概率预测精度
语言:

中文摘要

大规模新能源并网对智能电网的安全高效运行带来严峻挑战。可再生能源概率预测(REPF)技术可分析发电不确定性,量化风险平衡,防止电网崩溃。然而,现有依赖时空图的方法难以准确估计可再生能源的概率密度函数(PDF),导致对分布式发电系统的不确定性分析不足。为此,本文提出一种融合迁移学习的集成稀疏门控图密度网络(ISGGDN)。该模型结合交叉注意力与残差连接,构建稀疏门控图动态卷积网络,有效提取站点间空间特征及时空交互关系,提升概率预测精度。同时,设计多种迁移学习微调策略,增强特征迁移能力。基于相邻多站点风电与光伏数据的实验表明,ISGGDN在REPF任务中优于现有方法,具备更高的准确性与有效性。

English Abstract

Large-scale new energy grid-connected poses significant challenges to the safe and efficient operation of smart grids. Renewable energy probabilistic forecasting (REPF) technology can analyze uncertainties in power generation, quantitatively balance risks, and prevent the breakdown of the grid. However, current REPF methods reliant on spatio-temporal maps fail to accurately estimate the probability density function (PDF) of renewable energy, resulting lacking comprehensive uncertainty analysis for distributed power generation systems (DPGS). To fill this gap, in this study, an integrated sparse gated graph density network (ISGGDN) that incorporates transfer learning to tackle the REPF challenge. A sparse gated graph dynamic convolutional network based on cross attention and residual connection is developed, which can effectively extract spatial features and spatio-temporal interactions between sites and improve the accuracy of probabilistic prediction. Furthermore, to effectively identify the types of features lost during the transfer process and to enhance the transfer learning (TL) capability, we developed an integrated approach involving multiple fine-tuning strategies based on TL. We evaluated the proposed model using wind and photovoltaic (PV) power generation data from two neighboring multi-sites, and the experimental results demonstrate that ISGGDN outperforms other existing solutions in terms of accuracy and effectiveness in REPF.
S

SunView 深度解读

该ISGGDN多站点概率预测技术对阳光电源iSolarCloud智能运维平台及PowerTitan储能系统具有重要应用价值。通过稀疏门控图网络捕捉分布式光伏电站间时空关联,可显著提升SG系列逆变器集群的功率预测精度,为ST系列储能变流器提供更准确的充放电调度依据。其概率密度函数估计能力可优化储能系统的不确定性管理,降低电网波动风险。迁移学习策略可实现跨区域电站的快速模型部署,减少新站点调试成本。建议将该技术集成至iSolarCloud平台的预测性维护模块,结合VSG控制策略,增强光储一体化系统的电网支撑能力与经济效益。