← 返回
储能系统技术 储能系统 GaN器件 工商业光伏 强化学习 ★ 4.0

生成式人工智能的演进:趋势与应用

The Evolution of Generative AI: Trends and Applications

作者 Maria Trigka · Elias Dritsas
期刊 IEEE Access
出版日期 2025年1月
技术分类 储能系统技术
技术标签 储能系统 GaN器件 工商业光伏 强化学习
相关度评分 ★★★★ 4.0 / 5.0
关键词 生成式人工智能 核心方法 应用领域 面临挑战 未来方向
语言:

中文摘要

生成式AI通过实现文本、图像、音频和结构化数据的高保真内容创建彻底革新AI领域。本综述探讨生成式AI的核心方法、进展、应用和持续挑战,涵盖变分自编码器、生成对抗网络、扩散模型和Transformer架构等关键模型。这些创新推动医疗、科学计算、自然语言处理、计算机视觉和自主系统的突破。尽管取得进展,生成式AI在偏见缓解、可解释性、计算效率和伦理治理方面面临挑战,需要研究可扩展架构、可解释性和AI安全机制。整合强化学习、多模态学习和自监督技术增强生成模型可控性和适应性。随着AI重塑工业自动化、数字媒体和科学发现,其社会和经济影响需要稳健政策框架。本综述全面分析生成式AI现状和未来方向,突出高效生成建模、AI驱动科学推理、对抗鲁棒性和伦理部署的创新。

English Abstract

Generative artificial intelligence (AI) has revolutionized AI by enabling high-fidelity content creation across text, images, audio, and structured data. This survey explores the core methodologies, advancements, applications, and ongoing challenges of generative AI, covering key models such as Variational Autoencoders (VAEs), Generative Adversarial Networks (GANs), Diffusion Models, and Transformer-based architectures. These innovations have driven breakthroughs in healthcare, scientific computing, Natural Language Processing (NLP), computer vision, and autonomous systems. Despite its progress, generative AI faces challenges in bias mitigation, interpretability, computational efficiency, and ethical governance, necessitating research into scalable architectures, explainability, and AI safety mechanisms. Integrating Reinforcement Learning (RL), multi-modal learning, and self-supervised techniques enhances controllability and adaptability in generative models. Additionally, as AI reshapes industrial automation, digital media, and scientific discovery, its societal and economic implications demand robust policy frameworks. This survey provides a comprehensive analysis of generative AI’s current state and future directions, highlighting innovations in efficient generative modelling, AI-driven scientific reasoning, adversarial robustness, and ethical deployment. By consolidating theoretical insights and real-world applications, it offers a structured foundation for researchers, industry professionals, and policymakers to navigate the evolving landscape of generative AI.
S

SunView 深度解读

该生成式AI综述对阳光电源智能化转型具有战略指导意义。阳光可将生成式AI应用于多个领域:电站运维中的故障诊断报告自动生成、光伏发电预测模型优化、储能调度策略智能生成等。结合阳光iSolarCloud平台的海量数据,可构建电力电子领域专用大模型,提升系统智能化水平,加速产品设计和运维优化,推进数字化转型。