← 返回
数字孪生与TD3算法实现车联网中电动汽车能量管理优化
Digital Twin and TD3-Enabled Optimization of xEV Energy Management in Vehicle-to-Grid Networks
| 作者 | Irum Saba · Abdulraheem H. Alobaidi · Sultan Alghamdi · Muhammad Tariq |
| 期刊 | IEEE Access |
| 出版日期 | 2025年1月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 可靠性分析 强化学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 电动汽车储能系统 数字孪生技术 TD3算法 状态估计 能源优化 |
语言:
中文摘要
电动汽车快速普及需优化储能系统管理以提升性能、寿命和可靠性。传统ESS管理方法在实时状态估计、能量优化和预测性维护方面存在困难,导致电池利用和可持续性效率低下。本文提出先进ESS框架,集成数字孪生DT技术和双延迟深度确定性策略梯度TD3算法(源自DDPG的最先进强化学习方法)。该集成实现关键ESS状态(SOC、SOH、SOE和RUL)的精确实时估计,增强预测性维护和运营效率。所提框架促进主动电池健康监控,生成潜在故障早期预警,通过DT驱动ESS控制实现智能电池更换。通过动态调整ESS控制策略,TD3算法优化能量分配,降低能耗,提升整体车辆性能。SOC、SOH和SOE预测精度达99.8%,有效解决xEV ESS管理关键挑战如单体均衡、动态充电速率调整、电池更换决策和能量优化,为可持续高效EV生态系统做出贡献。
English Abstract
The rapid expansion of extended electric vehicle (xEV) adoption necessitates optimizing energy storage systems (ESS) management for enhanced performance, longevity, and reliability. However, traditional ESS management approaches struggle with real-time state estimation, energy optimization, and predictive maintenance, leading to inefficiencies in battery utilization and sustainability. This paper addresses these challenges by proposing an advanced ESS framework that integrates digital twin (DT) technology with the twin-delayed deep deterministic policy gradient (TD3) algorithm, a state-of-the-art reinforcement learning method derived from the deep deterministic policy gradient (DDPG). This integration enables precise real-time estimation of critical ESS states, including state of charge (SoC), state of health (SoH), state of energy (SoE), and remaining useful life (RUL), thereby enhancing predictive maintenance and operational efficiency. The proposed framework facilitates proactive battery health monitoring, generates early warnings for potential failures, and enables intelligent battery swapping via DT-driven ESS control. By dynamically adapting ESS control strategies, the TD3 algorithm optimizes energy distribution, reduces energy consumption, and improves overall vehicle performance. With a prediction accuracy of 99.8% for SoC, SoH, and SoE, the proposed approach effectively addresses key challenges in xEV ESS management like cell balancing, dynamic charging rate adjustment, battery swapping decisions, and energy optimization, contributing to a more sustainable and efficient EV ecosystem.
S
SunView 深度解读
该数字孪生技术对阳光电源新能源汽车业务具有重要价值。阳光OBC车载充电机和BMS系统需要精准的电池状态估计和智能能量管理。该研究的DT-TD3框架可集成到阳光车辆能量管理系统,实现99.8%的高精度SOC/SOH估计,优化充电策略和电池寿命管理。在V2G车网互动场景下,该技术可预测电池健康状态,智能调度充放电功率,提升电网稳定性和用户收益。结合阳光iSolarCloud平台的云端智能,该方案可实现车队级能量优化,支持换电站和充电站的智能运营,推动电动汽车储能资源的聚合调度和价值挖掘。