找到 53 条结果
基于可重构有机光伏器件的视觉突触
Visual synapse based on reconfigurable organic photovoltaic cell
Xiangrong Pu1Fan Shu2Qifan Wang1Gang Liu2Zhang Zhang1 · 半导体学报 · 2025年1月 · Vol.46
受大脑分层协同处理视觉信息的启发,本文利用PM6:Y6体系优异的光响应特性,构建了一种垂直结构的光可调有机忆阻器,系统研究了其阻变特性、光电探测能力及光突触行为模拟。该器件实现了稳定的渐进式电阻调控,成功模拟了电压控制的长时程增强/抑制(LTP/LTD)及多种光电协同调节的突触可塑性,并仿真实现了人类视觉神经系统的图像感知与识别功能。以非易失性Au/PM6:Y6/ITO忆阻器作为人工突触与神经元模型,构建了分层协同处理的SLP-CNN级联神经网络,利用其线性可调光电导特性实现网络权重更新,图像识...
解读: 该有机光伏忆阻器技术为阳光电源智能运维系统提供创新思路。其光电协同突触可塑性机制可应用于iSolarCloud平台的边缘智能诊断:利用光伏组件自身光响应特性实现分布式故障识别,无需额外传感器。分层协同SLP-CNN架构可优化ST储能系统的BMS电池状态预测,通过模拟神经突触的渐进式权重调节实现自适应...
融合迁移学习和集成方法的光伏系统短期功率预测
A Spatiotemporal Feature Extraction Technique Using Superlet-CNN Fusion for Improved Motor Imagery Classification
Neha Sharma · Manoj Sharma · Amit Singhal · Nuzhat Fatema 等6人 · IEEE Access · 2025年1月
光伏功率预测对电网稳定运行和能源管理至关重要,但气象条件波动导致预测精度挑战。本文提出融合迁移学习和集成方法的短期功率预测框架,通过多源气象数据和历史发电数据的协同学习,实现高精度的15分钟至4小时功率预测。
解读: 该短期功率预测技术可集成到阳光电源iSolarCloud智慧光伏云平台。通过精准的功率预测优化SG系列光伏逆变器的能量管理策略,提升分布式光伏系统的电网友好性,为电力调度提供可靠的功率预测数据,支持高比例新能源接入。...
探索机器学习和深度学习技术在神经疾病脑电信号分类中的有效性
Exploring the Effectiveness of Machine Learning and Deep Learning Techniques for EEG Signal Classification in Neurological Disorders
Souhaila Khalfallah · William Puech · Mehdi Tlija · Kais Bouallegue · IEEE Access · 2025年1月
神经疾病是全球身体和认知残疾的主要原因,影响约15%的全球人口。本研究探索机器学习ML和深度学习DL技术在处理脑电图EEG信号以检测癫痫、自闭症谱系障碍ASD和阿尔茨海默病等神经疾病中的应用。呈现详细工作流程,从使用头戴设备采集EEG数据开始,然后使用有限脉冲响应FIR滤波器和独立成分分析ICA进行数据预处理以消除噪声和伪影。数据分段后提取带功率和Shannon熵等关键特征以提高分类准确性。这些特征存储在离线数据库中便于分析期间访问,然后应用于ML和DL模型,系统测试性能并与先前研究比较结果。研...
解读: 该EEG信号分类技术对阳光电源智能诊断系统有跨领域借鉴意义。虽然阳光主要聚焦能源设备,但信号处理和特征提取方法可应用于阳光设备状态监测和故障诊断。FIR滤波和ICA噪声消除技术对阳光电力电子设备信号处理有参考价值。机器学习和深度学习模型对比分析思路可应用于阳光故障分类算法开发。该研究验证的高准确率,...
ConvODE-Mixer:一种用于超短期光伏功率预测的多模态深度学习模型
ConvODE-Mixer: A multimodal deep learning model for ultra-short-term PV power forecasting
Binbin Yonga · Yanxiang Zhang · Jun Shenb · Aiai Renb 等6人 · Solar Energy · 2025年1月 · Vol.300
摘要 太阳能已成为应对全球能源与环境挑战的关键可再生能源。由于气象因素引起的光伏发电随机波动,光伏功率预测仍面临重大挑战,可能引发电网不稳定事件。本文提出了一种名为ConvODE-Mixer的多模态模型,该模型将卷积神经网络(CNN)与神经常微分方程(NODE)相结合,以提高超短期光伏功率预测的准确性。通过融合地面云图(GBCI)和气象数据,ConvODE-Mixer采用多尺度轻量化缩减型空洞空间金字塔池化(LR-ASPP)分割模块来捕捉云层厚度的变化,并引入通道注意力机制对光透射率敏感特征进行...
解读: 该ConvODE-Mixer多模态超短期光伏功率预测技术对阳光电源SG系列逆变器及ST储能系统具有重要应用价值。通过融合地基云图与气象数据,10分钟预测精度显著提升(MSE降低40.45%),可深度集成至iSolarCloud平台实现预测性运维。该技术能优化储能系统充放电策略,配合GFM控制技术提升...
MicroCrystalNet:基于扫描电镜岩相的高效可解释卷积神经网络微晶分类
MicroCrystalNet: An Efficient and Explainable CNN for Microcrystal Classification Using SEM Petrography
Mohammed Yaqoob · Mohammed Yusuf Ansari · Mohammed Ishaq · Issac Sujay Anand John Jayachandran 等6人 · IEEE Access · 2025年1月
微晶岩石纹理形态表征通常依赖扫描电镜SEM图像的视觉解释和人工测量,存在主观性、低效率、采样偏差和数据丢失问题。本文引入基于深度学习架构的最先进计算机视觉流程,用于从SEM图像分割和分类单个微晶。初步应用于低镁方解石碳酸盐岩,实例分割使用Meta的Segment Anything Model(SAM)定制调优版本。训练和测试分类器使用全球研究的48张不同碳酸盐微纹理SEM图像,共1852个微晶根据双重分类方案标记,包括晶体形状(菱形、多面体、无定形、球形)和晶面清晰度(自形至半自形、他形),共四...
解读: 该微晶图像分类技术可应用于阳光电源功率器件和材料分析。阳光SiC和GaN器件封装需要微观结构检测和质量控制。该MicroCrystalNet的高精度分割和分类能力可用于阳光功率模块的SEM质量检验,自动识别焊接缺陷、晶界异常和材料瑕疵。在储能电池材料研究中,该深度学习方法可加速电极材料和隔膜的微观表...
基于温度相关扩展卡尔曼滤波与深度学习的锂离子电池荷电状态与健康状态联合估计方法
A State-of-Charge and State-of-Health Joint Estimation Method of Lithium-Ion Battery Based on Temperature-Dependent Extended Kalman Filter and Deep Learning
Shiquan Wang · Kai Ou · Wei Zhang · Ya-Xiong Wang · IEEE Transactions on Industrial Electronics · 2024年7月
准确估算荷电状态(SOC)和健康状态(SOH)对于改进电池管理技术至关重要。然而,电池会受到温度和老化的影响,导致其呈现出更难以表征的非线性关系。本文提出了一种基于温度相关扩展卡尔曼滤波器(EKF)和深度学习的锂离子电池SOC - SOH联合估算方法。首先,创建包含温度和容量变量的电池模型状态矩阵、控制矩阵和观测矩阵,以便在本地端使用EKF进行实时SOC估算。其次,利用卷积神经网络(CNN)和注意力机制提取并加权电池老化特征,并结合门控单元解决长序列记忆问题,从而在远程计算平台上进行SOH估算。...
解读: 从阳光电源储能系统业务视角看,这项基于温度依赖扩展卡尔曼滤波与深度学习的SOC-SOH联合估算技术具有显著的工程应用价值。该技术直击储能系统电池管理的核心痛点——在复杂温度环境和电池老化条件下实现精准状态估计,这对我司大规模储能电站和户用储能产品的安全性、经济性至关重要。 技术架构上,论文提出的"...
基于动态参数的物理信息神经网络用于短期光伏功率预测:融合物理信息与数据驱动
Dynamic-parameter physics-informed neural networks for short-term photovoltaic power prediction: Integrating physics-informed and data driven
Weiru Wanga · Hanyang Guoa · Shaofeng Liub · Yechun Xina 等6人 · Applied Energy · 2025年1月 · Vol.401
为了克服传统混合预测模型中物理约束刚性以及样本不平衡的局限性,本文提出了一种基于动态参数物理信息神经网络(DP-PINN)的新型短期光伏(PV)功率预测框架。基于牛顿-拉夫森优化的K-means++(NBRO-Kmeans++)算法将天气划分为四种类型,与标准K-means++相比,轮廓系数提升了6.6%至45.8%。采用合成少数类过采样技术(SMOTE)对少数类样本进行动态平衡,在该情况下使均方根误差(RMSE)降低了50.5%。物理方程根据天气类型进行动态调整,三重约束损失函数融合了数据拟合...
解读: 该DP-PINN动态物理信息神经网络技术对阳光电源iSolarCloud智慧运维平台及SG系列光伏逆变器具有重要应用价值。通过天气分类与SMOTE样本平衡,极端天气下RMSE降低50.8%,可显著提升光伏电站功率预测精度。其动态参数优化机制(光电转化效率η、温度系数α可学习)与阳光电源MPPT优化技...
基于注意力增强InceptionNeXt的肺癌检测混合深度学习模型
Attention Enhanced InceptionNeXt-Based Hybrid Deep Learning Model for Lung Cancer Detection
Burhanettin Ozdemir · Emrah Aslan · Ishak Pacal · IEEE Access · 2025年1月
肺癌是全球癌症相关死亡的最常见原因。这种高度致命和流行疾病的早期诊断可显著提高生存率并防止其进展。计算机断层扫描CT是肺癌诊断的金标准成像方式,为肺结节评估提供关键见解。呈现集成卷积神经网络CNN和视觉Transformer ViT的混合深度学习模型。通过优化和集成网格和块注意力机制与InceptionNeXt块,所提模型有效捕获CT图像中的细粒度和大规模特征。这种综合方法使模型不仅能区分恶性和良性结节,还能识别腺癌、大细胞癌和鳞状细胞癌等特定癌症亚型。InceptionNeXt块的使用促进多尺...
解读: 该肺癌检测深度学习模型对阳光电源智能诊断技术有跨领域借鉴意义。虽然阳光主要聚焦能源设备,但CNN与ViT混合架构和注意力机制可应用于阳光设备缺陷检测和故障诊断。多尺度特征处理技术对阳光光伏组件热斑检测和储能设备异常识别有参考价值。轻量级高精度模型设计思路与阳光边缘智能设备需求一致。迁移学习方法可应用...
基于微调策略的跨工况船用柴油机故障诊断通用迁移学习框架
A universal transfer learning framework for cross-working-condition marine diesel engine fault diagnosis based on fine-tuning strategy
Zeyu Shia · Zhongwei Wanga · Zhiguo Yuana · Muyu Wanga 等6人 · Applied Energy · 2025年1月 · Vol.392
摘要 船用柴油机(MDEs)及时且准确的故障诊断(FD)对于提升船舶动力系统的安全性和可靠性至关重要。MDEs在变工况下运行,导致其运行状态和故障数据存在显著差异。这种变异性降低了数据驱动FD模型的适应能力,而这些模型通常是基于单台发动机或特定工况下的数据构建的。为解决上述问题,本研究提出了一种基于深度迁移学习与微调策略的MDEs故障诊断框架。为了增强故障特征提取能力,引入了一种数据层级融合方法用于数据重构。此外,提出了一种新型混合预训练网络,结合CNN + GRU与KAN,以获取源域数据的全面...
解读: 该跨工况迁移学习故障诊断框架对阳光电源储能系统(ST系列PCS、PowerTitan)及光伏逆变器(SG系列)具有重要应用价值。文章提出的CNN+GRU+KAN混合网络和精细调优策略,可应用于不同环境工况下的功率器件(SiC/IGBT)健康监测与故障预测。该方法能有效解决iSolarCloud平台中...
基于新型CNN集成与可解释人工智能的配电网虚假数据注入攻击检测与定位框架
False Data Injection Attack Detection and Localization Framework in Power Distribution Systems Using a Novel Ensemble of CNNs and Explainable Artificial Intelligence
Mohammad Reza Dehbozorgi · Mohammad Rastegar · Mohammadreza Fakhari Moghaddam Arani · IEEE Transactions on Industry Applications · 2025年1月
信息物理电力系统易受网络攻击,尤其是虚假数据注入攻击(FDIA)。近年来,针对配电系统状态估计(DSSE)的虚假数据注入攻击受到了研究人员的关注,此类攻击通过更改电表读数来改变状态估计(SE)。文献中常见的针对虚假数据注入攻击的防御方法是使用标记数据训练分类器作为虚假数据注入攻击检测器。然而,虚假数据注入攻击数据集的高度不平衡特性可能会限制这种方法的性能。机器学习模型的黑盒特性使其在重要应用中难以获得信任和采用。因此,我们提出了一种创新的可解释人工智能(XAI)增强的基于集成学习的检测与定位模型...
解读: 从阳光电源的业务视角来看,该论文提出的虚假数据注入攻击(FDIA)检测框架具有重要的战略意义。随着公司在分布式光伏、储能系统及综合能源解决方案领域的快速拓展,我们的产品正日益深度融入配电网的信息物理系统中,这使得网络安全防护成为保障系统可靠运行的关键要素。 该技术的核心价值在于为我们的智能逆变器和...
量子密钥分发在智能电网网络安全系统中的适用性研究
Quantum Key Distribution Applicability to Smart Grid Cybersecurity Systems
Farid · Proshanta Kumer Das · Monirul Islam · Ebna Sina · IEEE Access · 2025年1月
为应对电力需求增长和提升电网韧性,电网现代化需部署先进通信设备。智能电网效率和可靠性与设备间信息交换密切相关,但信息流增加会扩大攻击面并引入新漏洞。目前智能电网主要通过密码学保护信息,但随着算力提升和复杂攻击增加,传统密码算法安全性受威胁。量子密钥分发提供对称密钥安全分发方案,安全性源于量子物理本质。本文研究QKD在智能电网各领域的适用性,识别18个用例和7个评估因子,分析各用例的保密性、完整性和可用性影响及QKD适用性。
解读: 该量子加密技术对阳光电源智慧能源平台的数据安全至关重要。阳光iSolarCloud云平台管理海量光伏储能设备,数据安全是核心关切。该研究为阳光未来布局量子加密通信提供理论基础。在电网侧储能和虚拟电厂场景下,QKD可保护调度指令和交易数据安全,防止恶意攻击和数据篡改,提升系统安全等级至金融级标准。...
基于TCN-LSTM神经网络与迁移学习的数字孪生支持型电池状态估计
Digital Twin-supported Battery State Estimation Based on TCN-LSTM Neural Networks and Transfer Learning
Kai ZhaoYing LiuYue ZhouWenlong MingJianzhong Wu · 中国电机工程学会热电联产 · 2025年1月 · Vol.45
准确估计电池荷电状态(SOC)、健康状态(SOH)及剩余使用寿命(RUL)对储能技术发展至关重要。本文提出一种融合时间卷积网络(TCN)与长短期记忆网络(LSTM)的数字孪生(DT)支持型电池状态估计算法。构建四层层次化DT架构以克服传统电池管理系统在计算与存储上的局限,并引入基于迁移学习的在线TCN-LSTM模型,实现神经网络参数的动态更新与实时精度优化。实验结果表明,该方法在90个循环数据下SOC、SOH和RUL的平均均方根误差分别为1.1%、0.8%和0.9%,显著优于传统CNN等模型,展...
解读: 该数字孪生支持的电池状态估计技术对阳光电源ST系列储能系统和PowerTitan大型储能方案具有重要应用价值。TCN-LSTM融合架构可直接集成至BMS系统,实现SOC/SOH/RUL的高精度实时估计(RMSE<1.1%),显著提升电池全生命周期管理能力。四层DT架构突破边缘侧计算瓶颈,可与iSol...
SolarNexus:一种用于自适应光伏功率预测与可扩展管理的深度学习框架
_SolarNexus_: A deep learning framework for adaptive photovoltaic power generation forecasting and scalable management
Hyunsik Mina · Byeongjoon Noh · Applied Energy · 2025年1月 · Vol.391
摘要 光伏(PV)功率预测在可再生能源管理中发挥着关键作用。然而,传统预测模型通常难以适应动态环境变化,并在不同区域间实现有效扩展。针对这些挑战,本文提出了一种融合时间卷积网络(TCN)、多头注意力机制(MHA)、在线学习和迁移学习的深度学习框架。为验证所提方法的有效性,我们采用了来自韩国九个太阳能电站的数据。该数据集来源于韩国开放数据门户和韩国气象厅,涵盖了2017年1月1日至2019年12月31日的逐小时光伏发电量及气象参数,其中两年用于训练,一年用于测试。我们在相同条件下将所提出的TCN-...
解读: 该深度学习预测框架对阳光电源iSolarCloud智能运维平台具有重要应用价值。TCN-MHA在线学习模型可集成至SG系列逆变器和ST储能系统的智能调度算法,实现17.19%的NRMSE预测精度,支持多区域迁移学习降低85%训练时间和99%功耗。该技术可优化PowerTitan储能系统的充放电策略,...
第 3 / 3 页