← 返回
储能系统技术 储能系统 深度学习 ★ 4.0

MicroCrystalNet:基于扫描电镜岩相的高效可解释卷积神经网络微晶分类

MicroCrystalNet: An Efficient and Explainable CNN for Microcrystal Classification Using SEM Petrography

作者 Mohammed Yaqoob · Mohammed Yusuf Ansari · Mohammed Ishaq · Issac Sujay Anand John Jayachandran · Mohammed S. Hashim · Thomas Daniel Seers
期刊 IEEE Access
出版日期 2025年1月
技术分类 储能系统技术
技术标签 储能系统 深度学习
相关度评分 ★★★★ 4.0 / 5.0
关键词 微晶岩石 扫描电镜图像 深度学习 实例分割 微晶分类
语言:

中文摘要

微晶岩石纹理形态表征通常依赖扫描电镜SEM图像的视觉解释和人工测量,存在主观性、低效率、采样偏差和数据丢失问题。本文引入基于深度学习架构的最先进计算机视觉流程,用于从SEM图像分割和分类单个微晶。初步应用于低镁方解石碳酸盐岩,实例分割使用Meta的Segment Anything Model(SAM)定制调优版本。训练和测试分类器使用全球研究的48张不同碳酸盐微纹理SEM图像,共1852个微晶根据双重分类方案标记,包括晶体形状(菱形、多面体、无定形、球形)和晶面清晰度(自形至半自形、他形),共四个类别。MicroCrystalNet所提分类模型采用卷积神经网络架构,结合先进特征图处理(特征归一化、降维和稀疏特征选择),集成在新颖的归一化稀疏缩减块中。性能指标显示所有类别的平均精度AP为0.93-0.98、ROC曲线下面积AUC为0.95-0.99,与人工真值图像视觉对比展示强大的类间判别能力,即使存在遮挡。

English Abstract

Morphological characterization of microcrystalline rock textures typically relies upon the visual interpretation and manual measurement of scanning electron microscopy (SEM) imagery: a practice fraught with subjectivity, inefficiency, sampling bias, and data loss. We introduce a state-of-the-art computer vision pipeline, built on deep learning architectures, for segmenting and classifying individual microcrystals from SEM images. Initially applied to low-Mg calcite carbonate rocks, instance segmentation is achieved using a custom-tuned version of Meta’s Segment Anything Model (SAM). To train and test the classifier, we utilized 48 SEM images of diverse carbonate microtextures composed of Low-Mg calcite from studies performed worldwide. Each individual microcrystal (1852 in total) was labelled according to a bipartite classification scheme, encompassing both crystal shape (rhombic, polyhedral, amorphous, and spherical), and degree of crystal facet definition (euhedral to subhedral, anhedral), with a total of four distinct classes. MicroCrystalNet: our proposed classification model employs a convolutional neural network architecture, incorporating advanced feature map processing (feature normalization, dimensionality reduction, and sparse feature selection), integrated within a novel Normalized Sparse Reduction block. Performance metrics reveal excellent average precision scores (AP = 0.93-0.98) and Area Under Receiver-Operator Curve values (AUC = 0.95-0.99) across all classes, with visual comparison to manual ground truth images demonstrating powerful inter-class discriminatory power, even in the presence of occlusions.
S

SunView 深度解读

该微晶图像分类技术可应用于阳光电源功率器件和材料分析。阳光SiC和GaN器件封装需要微观结构检测和质量控制。该MicroCrystalNet的高精度分割和分类能力可用于阳光功率模块的SEM质量检验,自动识别焊接缺陷、晶界异常和材料瑕疵。在储能电池材料研究中,该深度学习方法可加速电极材料和隔膜的微观表征,优化材料配方。结合阳光研发中心的材料实验室,该技术可建立自动化质检流程,提升检测效率和一致性,缩短新产品开发周期,保障功率器件和电池产品的可靠性和性能。