← 返回
储能系统技术 储能系统 深度学习 ★ 5.0

基于注意力增强InceptionNeXt的肺癌检测混合深度学习模型

Attention Enhanced InceptionNeXt-Based Hybrid Deep Learning Model for Lung Cancer Detection

作者 Burhanettin Ozdemir · Emrah Aslan · Ishak Pacal
期刊 IEEE Access
出版日期 2025年1月
技术分类 储能系统技术
技术标签 储能系统 深度学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 肺癌 早期诊断 深度学习模型 肺结节 CT图像
语言:

中文摘要

肺癌是全球癌症相关死亡的最常见原因。这种高度致命和流行疾病的早期诊断可显著提高生存率并防止其进展。计算机断层扫描CT是肺癌诊断的金标准成像方式,为肺结节评估提供关键见解。呈现集成卷积神经网络CNN和视觉Transformer ViT的混合深度学习模型。通过优化和集成网格和块注意力机制与InceptionNeXt块,所提模型有效捕获CT图像中的细粒度和大规模特征。这种综合方法使模型不仅能区分恶性和良性结节,还能识别腺癌、大细胞癌和鳞状细胞癌等特定癌症亚型。InceptionNeXt块的使用促进多尺度特征处理,使模型对复杂多样的肺结节模式特别有效。包含网格注意力提高模型识别图片不同部分间空间关系的能力,而块注意力聚焦捕获分层和上下文信息,允许肺结节的精确识别和分类。为确保鲁棒性和通用性,使用两个公共数据集Chest CT和IQ-OTH/NCCD训练和验证模型,采用迁移学习和预处理技术提高检测准确性。所提模型在IQ-OTH/NCCD数据集上实现99.54%准确率,Chest CT数据集上98.41%,优于最先进CNN和ViT方法。仅1810万参数,模型为早期肺癌检测提供轻量级而强大的解决方案。

English Abstract

Lung cancer is the most common cause of cancer-related mortality globally. Early diagnosis of this highly fatal and prevalent disease can significantly improve survival rates and prevent its progression. Computed tomography (CT) is the gold standard imaging modality for lung cancer diagnosis, offering critical insights into the assessment of lung nodules. We present a hybrid deep learning model that integrates Convolutional Neural Networks (CNNs) with Vision Transformers (ViTs). By optimizing and integrating grid and block attention mechanisms with InceptionNeXt blocks, the proposed model effectively captures both fine-grained and large-scale features in CT images. This comprehensive approach enables the model not only to differentiate between malignant and benign nodules but also to identify specific cancer subtypes such as adenocarcinoma, large cell carcinoma, and squamous cell carcinoma. The use of InceptionNeXt blocks facilitates multi-scale feature processing, making the model particularly effective for complex and diverse lung nodule patterns. Similarly, including grid attention improves the model’s capacity to identify spatial relationships across different sections of the picture, whereas block attention focuses on capturing hierarchical and contextual information, allowing for precise identification and categorization of lung nodules. To ensure robustness and generalizability, the model was trained and validated using two public datasets, Chest CT and IQ-OTH/NCCD, employing transfer learning and pre-processing techniques to improve detection accuracy. The proposed model achieved an impressive accuracy of 99.54% on the IQ-OTH/NCCD dataset and 98.41% on the Chest CT dataset, outperforming state-of-the-art CNN-based and ViT-based methods. With only 18.1 million parameters, the model provides a lightweight yet powerful solution for early lung cancer detection, potentially improving clinical outcomes and increasing patient survival rates.
S

SunView 深度解读

该肺癌检测深度学习模型对阳光电源智能诊断技术有跨领域借鉴意义。虽然阳光主要聚焦能源设备,但CNN与ViT混合架构和注意力机制可应用于阳光设备缺陷检测和故障诊断。多尺度特征处理技术对阳光光伏组件热斑检测和储能设备异常识别有参考价值。轻量级高精度模型设计思路与阳光边缘智能设备需求一致。迁移学习方法可应用于阳光小样本场景的模型训练。该研究展示的高准确率和鲁棒性,可启发阳光开发更先进的智能诊断算法,提升设备运维智能化水平和故障预测准确性。