← 返回
ConvODE-Mixer:一种用于超短期光伏功率预测的多模态深度学习模型
ConvODE-Mixer: A multimodal deep learning model for ultra-short-term PV power forecasting
| 作者 | Binbin Yonga · Yanxiang Zhang · Jun Shenb · Aiai Renb · Xu Zhoub · Qingguo Zhoua |
| 期刊 | Solar Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 300 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 储能系统 深度学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | ConvODE-Mixer integrates CNNs and Neural ODEs for 10 min photovoltaic forecasting. |
语言:
中文摘要
摘要 太阳能已成为应对全球能源与环境挑战的关键可再生能源。由于气象因素引起的光伏发电随机波动,光伏功率预测仍面临重大挑战,可能引发电网不稳定事件。本文提出了一种名为ConvODE-Mixer的多模态模型,该模型将卷积神经网络(CNN)与神经常微分方程(NODE)相结合,以提高超短期光伏功率预测的准确性。通过融合地面云图(GBCI)和气象数据,ConvODE-Mixer采用多尺度轻量化缩减型空洞空间金字塔池化(LR-ASPP)分割模块来捕捉云层厚度的变化,并引入通道注意力机制对光透射率敏感特征进行动态加权,从而提升光伏功率预测精度。在10分钟前向预测任务中,ConvODE-Mixer相较于MNF-ODEnet表现出具有统计显著性的性能提升。具体而言,ConvODE-Mixer的均方误差(MSE)降低了40.45%,平均绝对误差(MAE)减少了31.11%,决定系数R²提高了4.66%,相对绝对误差(RAE)下降了41.17%。这些结果验证了该模型在快速天气变化期间减少预测值与实际值偏差的能力,有助于稳定超短期电网运行,使电力调度系统能够以更高的运行效率维持供需平衡。
English Abstract
Abstract Solar energy has emerged as a critical renewable resource for addressing global energy and environmental challenges. Owing to meteorological-induced stochastic fluctuations in photovoltaic (PV) generation, PV power forecasting still faces significant challenges, potentially causing grid instability events. This paper proposes a multimodal model, designated ConvODE-Mixer, integrating convolutional neural networks (CNNs) with neural ordinary differential equations (NODE) to improve the ultra-short-term PV power forecasting accuracy. By integrating ground-based cloud images (GBCI) and meteorological data, ConvODE-Mixer utilizes a multi-scale lite-reduced atrous spatial pyramid pooling (LR-ASPP) segmentation module to capture cloud thickness variations and a channel attention mechanism that dynamically weights light transmittance-sensitive features, thereby enhancing PV power forecasting precision. In the 10 min ahead forecasting task, ConvODE-Mixer exhibited statistically significant performance enhancements over MNF-ODEnet. Specifically, ConvODE-Mixer achieved a 40.45% reduction in mean square error (MSE), a 31.11% decrease in mean absolute error (MAE), a 4.66% improvement in R 2 , and a 41.17% reduction in relative absolute error (RAE). These results validate the model’s capacity to stabilize ultra-short-term grid operations by reducing prediction-to-actual deviations during rapid weather transitions, thereby enabling power dispatch systems to maintain supply–demand equilibrium with improved operational efficiency.
S
SunView 深度解读
该ConvODE-Mixer多模态超短期光伏功率预测技术对阳光电源SG系列逆变器及ST储能系统具有重要应用价值。通过融合地基云图与气象数据,10分钟预测精度显著提升(MSE降低40.45%),可深度集成至iSolarCloud平台实现预测性运维。该技术能优化储能系统充放电策略,配合GFM控制技术提升电网稳定性,特别适用于PowerTitan等大型储能项目的功率调度与需求侧响应场景,有效降低天气突变时的预测偏差,提升供需平衡效率。