← 返回
光伏发电技术 深度学习 ★ 5.0

SolarNexus:一种用于自适应光伏功率预测与可扩展管理的深度学习框架

_SolarNexus_: A deep learning framework for adaptive photovoltaic power generation forecasting and scalable management

语言:

中文摘要

摘要 光伏(PV)功率预测在可再生能源管理中发挥着关键作用。然而,传统预测模型通常难以适应动态环境变化,并在不同区域间实现有效扩展。针对这些挑战,本文提出了一种融合时间卷积网络(TCN)、多头注意力机制(MHA)、在线学习和迁移学习的深度学习框架。为验证所提方法的有效性,我们采用了来自韩国九个太阳能电站的数据。该数据集来源于韩国开放数据门户和韩国气象厅,涵盖了2017年1月1日至2019年12月31日的逐小时光伏发电量及气象参数,其中两年用于训练,一年用于测试。我们在相同条件下将所提出的TCN-MHA在线学习模型与ACL-RGRU和CNN-DeepESN等专用模型进行了对比,并通过消融实验评估了各组件对整体性能的贡献。此外,我们以世宗和济州作为源区域,实施迁移学习以研究跨区域预测能力。实验结果表明,本框架在归一化均方根误差(NRMSE)上平均达到约17.19,归一化平均绝对误差(NMAE)约为12.64,相较于现有模型误差降低了约60%。值得注意的是,在保持高预测精度的同时,迁移学习将训练时间从约265.61秒减少至约38.90秒(约85%的降低),图形处理器(GPU)利用率从约75.18%降至约16.14%(约78%的降低),功耗从约4,464.33千瓦降至约35.01千瓦(超过99%的降低)。

English Abstract

Abstract Photovoltaic (PV) power forecasting plays a crucial role in managing renewable energy resources . However, traditional forecasting models often encounter difficulties in adapting to dynamic environmental conditions and scaling across diverse regions. In response to these challenges, we propose a deep learning framework that integrates a temporal convolutional network (TCN), multi-head attention (MHA), online learning, and transfer learning . To validate our approach, we utilized data from nine solar power plants in South Korea . The dataset, obtained from the Korea Open Data Portal and the Korea Meteorological Administration, encompasses hourly data on photovoltaic generation and meteorological parameters from January 1, 2017, to December 31, 2019, with two years for training and one for testing. We compared our TCN-MHA online learning model against specialized models such as ACL-RGRU and CNN-DeepESN under identical conditions, and we conducted an ablation study to assess the contribution of each component. Furthermore, we investigated cross-regional forecasting by implementing transfer learning using Sejong and Jeju as source regions. The experimental results demonstrate that our framework attained an average normalized root mean square error (NRMSE) of approximately 17.19 and a normalized mean absolute error (NMAE) of about 12.64, signifying about a 60 % error reduction compared to existing models. Notably, transfer learning reduced training time from approximately 265.61 to about 38.90 seconds (about 85 % reduction), graphic processing unit (GPU) utilization from about 75.18 % to about 16.14 % (about 78 % reduction), and power consumption from approximately 4,464.33 kW to about 35.01 kW (over 99 % reduction), all while maintaining high forecasting accuracy.
S

SunView 深度解读

该深度学习预测框架对阳光电源iSolarCloud智能运维平台具有重要应用价值。TCN-MHA在线学习模型可集成至SG系列逆变器和ST储能系统的智能调度算法,实现17.19%的NRMSE预测精度,支持多区域迁移学习降低85%训练时间和99%功耗。该技术可优化PowerTitan储能系统的充放电策略,提升GFM/GFL控制响应速度,并为光储充一体化场景提供自适应预测能力,增强新能源电站的调度可靠性与经济性。